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Abstract

We study large-scale spatial systems that contain exogenous variables, e.g. environmen-

tal factors that are significant predictors in spatial processes. Building predictive models for

such processes is challenging because the large numbers of observations present makes it ineffi-

cient to apply full Kriging. In order to reduce computational complexity, this paper proposes

Sparse Pseudo-input Local Kriging (SPLK), which utilizes hyperplanes to partition a domain

into smaller subdomains and then applies a sparse approximation of the full Kriging to each

subdomain. We also develop an optimization procedure to find the desired hyperplanes. To

alleviate the problem of discontinuity in the global predictor, we impose continuity constraints

on the boundaries of the neighboring subdomains. Furthermore, partitioning the domain into

smaller subdomains makes it possible to use different parameter values for the covariance func-

tion in each region and, therefore, the heterogeneity in the data structure can be effectively

captured. Numerical experiments demonstrate that SPLK outperforms, or is comparable to,

the algorithms commonly applied to spatial datasets.

Keywords: Gaussian process regression, Local Kriging, Sparse approximation, Spatial datasets

1 Introduction

Advances in data collection technologies for geostatistics have created unprecedented opportuni-

ties to build more effective data-driven models. Of paramount importance in many engineering

applications is to build predictive models for spatial processes that include environmental factors
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such as temperature or irrigation as significant predictors (Gao et al., 2014; Zhang et al., 2017).

We call these environmental factors exogenous variables to distinguish them from simple spatial

information such as latitude, longitude, and altitude.

Kriging (Cressie, 1990), also known as Gaussian process regression (GPR) (Rasmussen and

Williams, 2006), is a powerful tool for modeling spatial processes. Theoretically, GPR can benefit

from very large datasets since it is a non-parametric model whose flexibility and performance

generally increase by having more data points (Friedman et al., 2009). However, the computational

complexity of GPR is dominated by the inversion of covariance matrices which is of O(N3), where

N is the number of data points.

To reduce GPR computation time, various approaches have been developed to approximate the

covariance matrix of GP, resulting in less costly matrix operations. One class of such methods ap-

proximates the covariance matrix with sparse matrices, i.e., matrices with many zero elements (Fur-

rer et al., 2006; Zhang and Du, 2008; Kaufman et al., 2008), and another class of methods finds low-

rank approximations of the covariance matrix (Williams and Seeger, 2001; Smola and Schölkopf,

2000; Snelson, 2007; Snelson and Ghahramani, 2007; Quiñonero-Candela and Rasmussen, 2005;

Pourhabib et al., 2014). However, these methods do not directly take the heterogeneous structure

for the data into account: if the behavior of the response variable strongly depends on the un-

derlying geology (Kim et al., 2005) or the exogenous variables, it is reasonable to assume different

values for parameters of a given covariance function (hence, heterogeneity). Although there is a rich

body of literature in spatial statistics that proposes different methods to capture inhomogeneous

covariance structures (see Sampson and Guttorp (1992); Schmidt and O’Hagan (2003); Damian

et al. (2003); Paciorek and Schervish (2006); Lindgren et al. (2011); Fuglstad et al. (2015)), the

application of these methods is generally limited to small datasets with up to two-dimensional

input spaces. As such, for large spatial datasets, and especially data with exogenous variables,

it is beneficial to allow for different covariance parameters in each region, while addressing the

computational challenge of handling the large number of observations.

In order to reduce the computational complexity of GPR, while at the same time improve

its ability to tackle inhomogeneous covariance structures for large spatial datasets, one idea is

to use a class of local Kriging that assumes distinct covariance functions for each region of the

data domain. Local Kriging uses a partitioning policy that decomposes the domain into smaller
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subdomains and applies local GPR in each subdomain (Haas, 1990; Park et al., 2011; Gramacy

and Lee, 2008). Therefore, local Kriging reduces the total computational complexity to O(Nn2),

where n is the number of local data points, and n � N . This idea, however, presents two related

challenges: discontinuity in prediction on the boundaries of the subdomains and devising an efficient

partitioning policy.

To address discontinuity on the boundaries, one category of local Kriging methods uses various

averaging techniques to smooth the prediction surface close to the boundaries. Examples in this

category include Bayesian committee machine, BCM (Tresp, 2000), mixtures of Gaussian processes,

MGP (Rasmussen and Ghahramani, 2002), treed Gaussian process models, TGP (Urtasun and

Darrell, 2008; Gramacy and Lee, 2008), bagged Gaussian process, BGP (Chen and Ren, 2009),

and local probabilistic regression, LPR (Urtasun and Darrell, 2008). Such averaging techniques,

however, come at the cost of higher computational complexity at prediction time.

Another category of methods to alleviate the discontinuity problem enforces continuity con-

straints on the boundaries of subdomains. This class of approaches includes domain decomposition

method, DDM (Park et al., 2011), patching local Gaussian processes, PGP (Park and Huang, 2016),

and patchwork Kriging, PWK (Park and Apley, 2018). Experimental studies suggest that directly

imposing continuity constraints generally outperforms the averaging techniques (Park et al., 2011;

Park and Huang, 2016; Park and Apley, 2018). However, due to the complexity of handling bound-

ary conditions, only PWK can be applied to higher-dimensional domains; DDM and PGP are

limited in practice to only two-dimensional domains (Park and Apley, 2018).

Furthermore, none of the local Kriging approaches above take the data structure, which is

manifested in the covariance function, into account when partitioning the data domain: DDM and

PGP use uniform mesh that partitions the domain of the input data into rectangles. TGP and

PWK, on the other hand, use simple tree based partitioning to iteratively bisect the input domain.

Moreover, in order to obtain time efficient algorithms, the number of data points in each subdomain

must be kept to a small value, e.g., up to 600 data points in each subdomain (Park et al., 2011;

Park and Apley, 2018). However, there is a trade-off between the number of subdomains and the

accuracy of prediction: as the number of subdomains, and thus boundaries, increases, the prediction

accuracy on the boundaries of the subdomains decreases, regardless of the method used to handle

the boundary conditions.
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To address the limitations of existing local Kriging methods, this paper proposes a new method,

Sparse Pseudo-input Local Kriging (SPLK), which utilizes covariance information to partition the

data domain into subdomains. The data is partitioned using parallel hyperplanes, and continuity

constraints are enforced on the boundaries of subdomains. This partitioning approach minimizes

the number of boundaries and simplifies boundary conditions, allowing application to datasets

with moderate dimensional spaces. We develop an optimization algorithm to find the desired

hyperplanes that result in lower errors for the covariance approximations in each region, and provide

theoretical justification for the use of such parallel hyperplanes to create the subdomains based on

analysis of the covariance structure. Therefore, SPLK is essentially a hybrid method combining

low-rank approximations and local GPR to seamlessly integrate a partitioning policy into local

approximations to improve prediction accuracy.

One potential disadvantage to this proposed partitioning is that it can result in large-size subdo-

mains, which makes the application of the full GPR in each subdomain computationally inefficient;

this limitation is overcome by using covariance approximation methods for each region. This ap-

proximation also has the added benefit of increasing the flexibility of choosing the sizes of the

subdomains to further reduce the number of boundaries. While SPLK has a higher computational

complexity compared to sparse and low-rank approximation methods due to the handling of the

boundary conditions, however, the use of local covariance functions in each subdomain better cap-

tures the heterogeneous data structures compared to low-rank approximation methods. Another

trade-off is that since the covariance structure of a spatial process can vary in different direc-

tions, partitioning in one direction using parallel hyperplanes may not be the most flexible way

of capturing such structures. Nonetheless, this simple partitioning of SPLK significantly reduces

computation time over existing local Kriging methods while still maintaining acceptable prediction

accuracy.

As the dimension of the data domain increases, handling the boundary conditions of SPLK

becomes more computationally expensive due to the expansion of the boundary spaces. Therefore,

we suggest applying SPLK to spatial datasets with a moderate number of exogenous variables.

However, we note that the methodology is general and can be efficiently applied to any large dataset

(on the order of hundreds of thousand of data points) with a small number of input variables (say

ten or fewer). Our numerical studies demonstrate that SPLK outperforms, or performs as well as,
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the competing algorithms in terms of computation time or accuracy on two and three-dimensional

spatial data, higher-dimensional spatial data with exogenous variables, and a nine-dimensional

non-spatial data.

The remainder of this paper is organized as follows. Section 2 introduces GPR, and a few

approximation techniques that are relevant to this paper. Section 3 explains the proposed method

including domain partitioning, training local models subject to boundary conditions, and choosing

directions of cuts. Section 4 compares the proposed method to commonly used algorithms. Section 5

concludes the paper and suggests future research. The supplemental material includes proof of all

theorems and other technical details and analyses related to the proposed approach.

2 Gaussian Process Regression

Given an index set T, a Gaussian Process (GP) is a stochastic process where for any T′ =

{t1, . . . , tN} as a finite subset of T, the random vector [ft1 , . . . , ftN ]T follows a multivariate normal

distribution (Rasmussen and Williams, 2006), where fti is a realization of a measurable function

F : Ω ⊂ Rp → R for a given ti. Here, we consider the index set to be a subset of Rp such that for a

given {x1,x2, . . . ,xN} ∈ Rp, the random vector f = [f1, f2, . . . , fN ]T follows a multivariate normal

distribution, where fi = F(xi) for all i ∈ [N ], and [N ] denotes the set of positive integers smaller

than or equal to N , i.e., [N ] = {1, . . . , N}.

We say a GP is fully specified when the function F follows a GP distribution with mean function

M(·) and covariance function φ(·, ·). In other words, givenM(·) and φ(·, ·), the mean vector and the

covariance matrix of random vector f can be calculated, i.e., µ = E(f) and K = E
(
(f−µ)(f−µ)T

)
,

where E{·} denotes the expectation operator. This means that µi = E(fi) =M(xj), µj = E(fj) =

M(xj), and kij = E
(
(fi − µi)(fj − µj)

)
= φ(xi,xj).

In the context of regression, given a training dataset D = {(xi, yi) | i = 1, .., N} consisting

of noise contaminated observations, i.e., yi = F(xi) + εi, the Gaussian Process Regression (GPR)

seeks p(f∗|y), the predictive distribution of f∗ at x∗ given y = [y1, y2, . . . , yN ]T . We can derive this
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predictive distribution directly from the definition of the GP using joint Gaussian distribution

[y, f∗]
T ∼ N

0,

KXX + σ2I kXx∗

kx∗X kx∗x∗


 , (1)

where KXX is a N × N covariance matrix of pairwise elements in X = {x1, . . . ,xN}, kXx∗ is a

N × 1 vector of covariances between X and x∗, and kx∗x∗ is the variance at x∗. Hence, the GPR

predictive distribution can be obtained by conditioning f∗ given y in (1),

f∗|y ∼ N
(
kx∗X(KXX + σ2I)−1y, kx∗x∗ − kx∗X(KXX + σ2I)−1kXx∗

)
. (2)

Since calculating (2) entails inverting matrices of size N , the computational complexity is of

O(N3), which is generally too slow for most practical applications, especially spatial statistics.

Low-rank covariance approximation methods (Williams and Seeger, 2001; Quiñonero-Candela and

Rasmussen, 2005) approximate the original covariance matrix through the Nyström method,

KXX ≈ K̃XX = KXX̃K−1
X̃X̃

KX̃X, (3)

where X̃ is either a subset of {x1,x2, . . . ,xN} or a set of unobserved pseudo-inputs, which are a

new set of parameters used to approximate the likelihood of GPR. In particular, Sparse Pseudo-

input Gaussian Process (SPGP) (Snelson and Ghahramani, 2007) assumes that observations y are

conditionally independent, given the pseudo-outputs f̃ = [f̃1, . . . , f̃m]T defined on pseudo-input set

X̃ = {x̃1, . . . , x̃m}. This implies the joint Gaussian likelihood,

[y, f∗]
T ∼ N

0,

K̃XX + diag(KXX − K̃XX) + σ2I k̃Xx∗

k̃x∗X kx∗x∗


 , (4)

and the predictive mean and variance,

µ̂(f∗|y) = k̃x∗X(K̃XX + diag(KXX − K̃XX) + σ2I)−1y, (5)

σ̂2(f∗|y) = kx∗x∗ − (K̃XX + diag(KXX − K̃XX) + σ2I)−1k̃Xx∗ , (6)

6



where k̃Xx∗ is the low-rank covariance vector between X and the test data point x∗ calculated

by (3). Section 3 explains how the low-rank approximation in SPGP helps us devise a simple but

efficient partitioning policy for our proposed local Kriging method.

3 Sparse Pseudo-input Local Kriging

This section describes our proposed method, Sparse Pseudo-input Local Kriging (SPLK), where

we partition the domain of data into smaller subdomains with simple boundaries, train local pre-

dictors that utilize a low-rank covariance matrix in each subdomain, and connect neighboring local

predictors on their joint boundaries to obtain a continuous global predictor. To partition the in-

put domain, we use parallel hyperplanes, i.e., (p − 1)-dimensional linear spaces embedded in a

p-dimensional space (see Section F.1 for the details). This partitioning minimizes the number of

boundaries, because for S subdomains, we only need S − 1 parallel hyperplanes regardless of the

dimension of the input space. This reduction in the number of boundaries improves the prediction

accuracy, since the accuracy of local models decreases in the regions close to the boundaries regard-

less of the way the boundary conditions are handled. Moreover, partitioning by parallel hyperplanes

creates simple boundary conditions (see Section 3.1), as each boundary is shared by exactly two

subdomains. Hence, each boundary only requires two local predictors However, the drawback is

that the partitioning policy can result in very large subdomains, where a full GPR is computa-

tionally inefficient. We overcome this problem by using covariance approximation techniques that

utilize pseudo-inputs.

Among the infinite possible ways to partition a domain by parallel hyperplanes, we seek those

that improve the accuracy of local predictors, i.e., the covariance approximation in each subdomain

has the smallest error. We present two theorems that together determine the policy for creating

subdomains. We begin by presenting the local mean and variance calculations, assuming the sub-

domains have already been determined. Then we discuss justifications for the proposed parallel

hyperplanes for creating subdomains. (See Appendix F for practical aspects of SPLK’s implemen-

tation such as constructing hyperplanes, hyperparameter learning, and selection of control points).

Any partitioning policy that results in subdomains whose boundaries do not intersect, e.g.,

concentric hyperspheres, would benefit from having a small number of boundaries and simple
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boundary conditions. What makes parallel hyperplanes particularly appealing is the fact that

the boundary spaces are minimal compared to any other non-intersectional partitioning policy.

In addition, the simple structure of parallel hyperplanes allows us to analyze the direction of

partitioning based on the underlying covariance structure; this might not be feasible in other

partitioning policies.

3.1 Mean and Variance Prediction

Let Ω ∈ Rp denote the input domain, i.e., x ∈ Ω. We partition Ω into S subdomains Ωs for s ∈ [S]

such that
⋃S
s=1 Ωs = Ω, and Ωs ∩ Ωs′ = φ for s 6= s′. We also denote Xs = {xi ∈ X | xi ∈ Ωs}

and ys as the vector of observations corresponding to Xs (see Section 3.2 for an explanation of

determining Ωs). The partitioning scheme explained in Section 3.2 and Appendix F.1 can lead to

subdomains containing a large number of training data points, which makes the application of a full

GPR inefficient. Therefore, for each Ωs, we use ms local pseudo-inputs X̃s = {x̃1, . . . , x̃ms} ∈ Ωs

to form the local and low-rank covariance approximation,

K̃s
XsXs

= KXsX̃s
K−1

X̃sX̃s
KX̃sXs

. (7)

It is easy to verify that among all the linear predictors µ(f∗|x∗) = u(x∗)
Ty, where u(x∗) ∈ Rn

and [y, f∗]
T follows distribution (1), the GPR mean predictor minimizes the expected squared error,

E
(
(µ(f∗|x∗)−f∗)2

)
. We extend this idea to find the local and low-rank predictor for each subdomain

by assuming that [ys, f∗]
T follows the local version of SPGP’s joint likelihood distribution (4). As

such, we solve

min
us(x∗)

E
(
(us(x∗)

Tys − f∗)2
)

subject to [ys, f∗]
T ∼ N

0,

K̃s
XsXs

+ diag(KXsXs − K̃s
XsXs

) + σ2
sIs k̃sXsx∗

k̃sXsx∗
kx∗x∗


 ,

(8)

where us(x∗) is the local version of u(x∗), k̃sXsx∗
is the covariance vector between the test data

point x∗ ∈ Ωs and Xs using low-rank approximation formula (7). Expanding the objective function

with respect to the constraint in (8) and removing kx∗x∗ , which does not depend on us(x∗), results
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in the unconstrained optimization problem for each Ωs,

min
us(x∗)

Ms = us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗)− 2us(x∗)
T k̃sXsx∗ . (9)

Note that setting dMs
dus(x∗)

= 0 gives uopt
s (x∗) = (K̃XsXs + diag(KXsXs − K̃XsXs) + σ2I)−1k̃Xsx∗ ,

which is the SPGP’s mean predictor for subdomain Ωs. Next, we modify the optimization problem

to alleviate the problem of discontinuity in the predictions on the boundaries.

To impose continuity on the boundaries, we use a small number of control points on the bound-

aries of each subdomain (Park and Apley, 2018). Let Bs be the set of all the control points located

on the boundaries of Ωs. We intend to force local predictor us(x
∗)Tys to be equal to the boundary

values at the control point locations in Bs,

us(bi)
Tys = R(bi) ∀bi ∈ Bs, (10)

where R(bi) is a function that evaluates each bi (see Section F.1 for the details). Adding con-

straints (10) to local model (9) gives the constrained local optimization for each Ωs,

min
us(x∗)

Ms = us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗)− 2us(x∗)
T k̃sXsx∗

subject to us(bi)
Tys = R(bi) ∀bi ∈ Bs.

(11)

The objective function in optimization problem (11) is convex. Considering that the constraints

are affine functions, we can solve optimization problem (11) analytically by transforming it into

an unconstrained optimization problem using Lagrange duality principle (Bazaraa et al., 2013).

Appendix A in the supplemental material presents the solution procedure.

Solving optimization problem (11) obtains the optimal solution as

u∗s(x∗) = G−1
s (k̃sXsx∗ + ws), (12)

where ws = 0.5(k̃sx∗Xs
k̃sXsx∗

)−1ysk̃
s
x∗Bs

βsK̃
s
BsXs

k̃sXsx∗
and Gs = (K̃s

XsXs
+diag(KXsXs−K̃s

XsXs
)+

9



σ2
sIs). Therefore, the local mean predictor for Ωs becomes

µ̂s(f∗|x∗) = u∗s(x∗)
Tys = k̃sx∗Xs

G−1
s ys + wT

s G−1
s ys. (13)

Also, the objective function of local problem (9) is in fact the local variance predictor. Therefore

plugging u∗s(x∗) into (9) obtains the predictive variance for Ωs,

σ̂2
s(f∗|x∗) = kx∗x∗ − k̃sx∗Xs

G−1
s k̃sXsx∗ (14)

+k̃jx∗Xs
G−1
s ws + wT

s G−1
s ws −wT

s G−1
s k̃sXsx∗ ,

where kx∗x∗ is the constant initially removed from the optimization. Note that in both (13) and (14),

the first term is exactly the predictive mean and variance of local SPGP, and the following terms,

which are amplified for local points close to the boundaries, appear to maintain the continuity of

the global predictive function.

3.2 Subdomain selection

As mentioned in Section 3, for computational efficiency we only consider the subdomains that are

separated by parallel hyperplanes. We call these hyperplanes “cutting hyperplanes,” because each

of them partitions or “cuts” Ω into two non-overlapping sets on different sides of the hyperplane.

However, there are infinite ways of choosing the directions of the cutting hyperplanes. In Propo-

sition 1 of this section, we first provide a criterion to define the meaning of a “good” direction

of cutting, given a stationary covariance function. Next, using the first and the second theorems

that follow, we characterize the direction that optimizes the criterion. Finally, we introduce a

constrained optimization that finds the desired direction using a likelihood function of a sample of

the training data.

Recall that each subdomain Ωs uses a low-rank approximation for its covariance matrix. There-

fore, a natural criterion is to look for subdomains such that the error for this approximation is

minimized. Therefore, given a symmetric positive semidefinite kernel φ(·, ·) : Ωs × Ωs → R, our

objective is to create subdomain Ωs for which the expected covariance approximation error at any
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z ∈ Ωs using a set of pseudo inputs X̃s, i.e.,

EΩs(h− kzX̃s
K−1

X̃sX̃s
kX̃sz

), (15)

where the expectation operator is with respect to all z and X̃s over Ωs and h = φ(z, z), is minimized

(see Appendix B for derivation of covariance approximation error). However, since the expected

error has a complicated form and its direct calculation is a challenging task, we seek an upper

bound for this term and minimize that instead.

Proposition 1. Let φ(·, ·) denote a stationary covariance function, and h = φ(t, t) ∈ R be the eval-

uation of kernel φ(·, ·) at an arbitrary point t ∈ Ωs. Then, EΩs(φ
2(x,x′)) ≤ hEΩs(kz,X̃s

K−1
X̃sX̃s

kX̃sz
),

where x,x′, z, x̃1, . . . , x̃ms are i.i.d random vectors sampled from subdomain Ωs according to some

probability distribution P.

Proof. See Appendix C in the supplemental material for proofs of all theorems and propositions.

Propositions 1 provides an upper bound, i.e., h(1− 1
h2EΩs(φ

2(x,x′))), on expected error (15) (See

Appendix D for a simulation study showing that the relation between EΩs(φ
2(x,x′)) and expected

error (15) is more profound. In fact, under certain conditions by increasing EΩs(φ
2(x,x′)), the

expected error term itself monotonically decreases). Therefore, we seek to construct the subdomains

so that the expected covariance squared function is maximized, i.e., the upper bound of the expected

error is minimized. We note that Propositions 1 makes a stationarity assumption and therefore the

results may not hold for other types of covariance functions. However, because we use independent

covariance functions in each subdomain, we are still able to handle the heterogeneity, i.e., using

different parameters for each local covariance function.

For our theoretical framework, we consider a general scenario where, after standardizing the

data, the domain of data, Ω ⊂ Rp, is (or is inscribed in) a hypercube with edge length L, one vertex

is on the origin, and all the edges are parallel to one axis of Rp. The assumption that the domain

of the data is inscribed in a hypercube is valid even if each dimension of the original input domain

has different length; this is because after standardization, all the dimensions have the same length.
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Also we assume that the data points are uniformly sampled from Ω, specifically,

x1, . . . , xp
i.i.d∼ U(0, L) ∀x ∈ Ω. (16)

We call such an Ω a uniform straight hypercube.

Moreover, we consider the anti-isotropic squared exponential function as the choice of the co-

variance function,

φ(x,x′) = exp
(
− (x− x′)TΓ(x− x′)

)
, (17)

where Γ is a diagonal matrix with length-scale parameters γ1, . . . , γp on the diagonal, and without

loss of generality, assume γ1 ≤ . . . ≤ γp. We note that the squared function of (17), i.e., φ2(x,x′),

is a new squared exponential covariance function with the length scale parameters 2γ1 ≤ . . . ≤ 2γp.

Hence, as EΩs

(
φ(x,x′)

)
increases, EΩs

(
φ2(x,x′)

)
increases.

Given the kth primary axis and the vector of angles θ = {θ1, . . . , θp}\{θk} and assuming that the

cutting hyperplanes are equidistant (with distant W = L/S from each other), all the subdomains

and cutting hyperplanes can be fully characterized (See Appendix C). We denote the sth ∈ [S]

subdomain created on Ω by Ωθ,k,W,s, where the indices θ, k and W indicate that the cutting

hyperplanes are defined by the vector of angels θ, the kth primary axis, and the distance W . Note

that the cutting hyperplanes are orthogonal to the axis k only if θ = 0, that is θj = 0 for j ∈ [p]\{k}.

Theorem 1. Let Ω ⊂ Rp be a uniform straight hypercube with side length L, and let φ(·, ·) denote

covariance function (17). Then, for a fixed W = L/S, s ∈ [S], and k ∈ [p], Ω0,k,W,s gives the

maximum expected covariance, i.e.,

arg max
θ

EΩθ,k,W,s

(
φ(x,x′)

)
= 0.

While Theorem 1 shows that cutting orthogonally to the given axis k ∈ [p], i.e., θ = 0, maximizes

the expected covariance compared to any other θ > 0, Theorem 2 further shows that among all

the subdomains created by cutting orthogonally to a primary axis, the one created by cutting

orthogonally to the axis associated with the fastest direction of change, i.e., the direction associated

with the largest γ, has the maximum expected covariance
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Theorem 2. Let Ω ⊂ Rp be a uniform straight hypercube with side length L, and let φ(·, ·) denote

covariance function (17). Then for a fixed W = L/S and s ∈ [S], among all the subdomains

Ω0,k,W,s for k ∈ [p], Ω0,p,W,s gives the maximum expected covariance, i.e.,

arg max
k

EΩ0,k,W,s

(
φ(x,x′)

)
= p.

Theorems (1) and (2) along with the property of covariance function (17), i.e., larger values of

EΩs

(
φ(x,x′)

)
imply larger EΩs

(
φ2(x,x′)

)
, provide a partitioning policy for the domain Ω. That

is, cutting orthogonal to the direction of the fastest covariance decay reduces the upper bound

of expected error (15), and therefore, gives a more accurate covariance approximation in each

subdomain. The policy of cutting orthogonal to the direction of the fastest covariance decay

minimizes the correlation between the neighboring subdomains. This is because the covariance on

the two sides of each boundary decays faster than any other direction.

However, we note that the direction of the fastest covariance decay may not necessarily be a

primary axis of the input domain. To overcome this drawback, we relax the restriction of choosing

one of the primary axes as the direction of the fastest covariance decay by using a general form of

the squared exponential covariance function, φ(x,x′) = exp(−(x − x′)TM(x − x′)), where M is a

p× p positive definite matrix (Rasmussen and Williams, 2006). For the purpose of this discussion,

we define M as aaT + γIp, where a is a unit direction vector in the input space with length p, and

γ is a joint length-scale parameter, to obtain the following covariance function,

φa(x,x′) = exp(−(x− x′)T (aaT + γIp)(x− x′)), (18)

which involves a dot product (x−x′)Ta. This means that for a given distance ||x−x′||2, the angle

between x− x′ and a determines the covariance. In particular, the direction a itself has relatively

the highest rate of covariance decay.

Although in practice, direction a may not exist, fitting covariance function (18) to the data

using Maximum Likelihood Estimation can find the best choice of a under the MLE criterion.

Therefore, under the GP assumptions, we maximize the logarithm of the likelihood function to find
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the optimal value of vector a,

max
a,γ,σ2

−yT (Ka + σ2I)−1y − log|Ka + σ2I|, (19)

where Ka is the covariance matrix formed based on covariance function (18).

Here, since we only want to find direction a, the nuisance parameters are the variance and the

length scale parameters, σ2 and γ. Therefore, to shrink the parameter space, we set σ2 and γ to

small values after standardizing the data.

Note that optimization problem (19) is of O(N3), which is the same order of complexity as the

original problem. However, since the output of optimization (19) is merely used to find a desired

direction, and is not used for prediction, we utilize a small subset of data with size n� N . Further,

since a is a unit direction vector, we write a = [āT ,
√

1− āT ā]T , where ā = [a1, . . . , ap−1]T , and

add the unity constraint, āT ā ≤ 1, to the optimization problem. Consequently,

min
ā

L(ā) = yTn (Kā
n + σ2In)−1yn + log|Kā

n + σ2In|

subject to āT ā ≤ 1,

(20)

where yn is the response vector of the small subset of data and Kā
n is the covariance matrix evaluated

by covariance function (18) on the same small subset (See Appendix E for solving optimization

problem (20) by using Projected Gradient Descent (Nesterov and Nemirovskii, 1994)).

We also note that optimization (20) finds the direction of the fastest covariance decay indepen-

dent of the assumptions stated for Theorems 1 and 2. Our experiments in Section 4.3.2 show that

the directions found by optimization (20) can significantly increase the accuracy of SPLK, even if

the original input domains are not hypercubes or if the data points are not uniformly distributed.

We refer the reader to Appendix D for intuition behind the theoretical results presented above.

3.3 Computational complexity analysis of SPLK

This section presents the computational complexity analysis for SPLK. To this end, we look at

the computational costs of calculating the local mean and variance predictors in Section 3.1, and

finding the direction of cut in Section 3.2. In addition, we analyze training the boundary functions

presented in Appendix F.1 and training the local models presented in Appendix F.3.
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Calculating the local mean and variance predictors in each subdomain (explained in Section 3.1

and Appendix A) requires inverting the low-rank covariance matrix Gs and the boundary covari-

ance matrix [(diag(K̃s
BsXs

K̃s
XsBs

))−1(K̃s
BsXs

K̃s
XsBs

)] ◦Ks
BsBs

with sizes ns × ns and |Bs| × |Bs|,

respectively. Using Woodbury, Sherman and Morrison matrix inversion lemma (Hager, 1989), the

computational complexity of inverting Gs is of the order of O(nsm
2
s), where ms � ns; therefore, the

complexity of calculating each local mean and variance predictor becomes O(|Bs|3 +Nsm
2
s). Also,

training each local model (explained in Appendix F.3) requires maximizing the local likelihood

function (69). Snelson (2007) shows that the cost of finding the derivatives and maximizing (69)

is of the order of O(nsm
2
s). Therefore, denoting m as the average number of pseudo-inputs in

each subdomain, and Q as the average number of control points on each boundary, which implies

|Bs| ≈ 2Q, we obtain O(2Nm2 + 6SQ3) = O(Nm2 + SQ3) as the total computation complexity of

calculating the local mean and variance predictors and training local models.

Furthermore, since we train the boundary function (68) (explained in Appendix F.1) using the

full GPR on the set of neighboring data points ∆`, the computational complexity of training the

boundary functions is of the order of O(S∆3), where ∆ is the average size of all ∆`. Also, solving

the optimization (20) for finding the direction of cut, through solving optimization problem (20),

is dominated by the matrix inversion (Kā
n + σ2In)−1, which has the order O(n3).

Consequently, the total computational complexity of SPLK is of the order of (Nm2 + S(Q3 +

∆3) + n3). We note that as the dimension of the training data increases, more control points are

required to be located on the boundaries, which implies Q implicitly depends on p; however, since

the application of the current study focuses on moderate dimensional problems, the complexity of

SPLK is dominated by O(Nm2), under the assumption that the values of n � N and ∆ � N

are independent of N . Section 3.4 will discuss this assumption and the choice of other tuning

parameters.

3.4 Choice of the tuning parameters of SPLK

This section presents some guidelines for the selection of the tuning parameters of SPLK, which

are S, m, n, ∆, Q.

As the average number of local pseudo-inputs in each subdomain, m, increases, the accuracy of

SPLK increases at the expense of higher computation time. Such a trade-off rules out an “optimal”
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value for m. Williams et al. (2002) shows that as the eigenspectrum of the underlying covariance

function decays more quickly, given a fixed set of pseudo-inputs, the Nyström approximation be-

comes more accurate. Therefore, the choice of m depends on the covariance structure of the function

of interest. However, since SPLK optimizes the distribution of pseudo-inputs in each subdomain

using SPGP approximation, SPLK generally requires a smaller number of local pseudo-inputs com-

pared to other approximation methods that use ad-hoc selection of pseudo-inputs (Snelson, 2007).

In order to have a computationally efficient algorithm, we suggest setting m of the order of O(
√
N),

i.e., m = κ
√
N , where κ is a tuning parameter that determines the density of pseudo-inputs in each

subdomain. Our experiments in section 4 show that setting 1 < κ < 9 results in efficient computa-

tion time and relatively high accuracy. Alternatively, we note that a Bayesian approach can also be

used for the selection of m (Pourhabib et al., 2014), however the computation time is significantly

increased by the Markov Chain Monte Carlo sampling that is required in the Bayesian approach.

Similar to m, a trade-off exists between the accuracy and computation time for S, the number

of subdomains. As mentioned earlier, regardless of the approach used for handling the boundary

conditions, a larger number of subdomains reduces the computation time as well as the prediction

accuracy; smaller local models can be trained more efficiently but result in a larger number of

boundaries, which in turn reduces the overall accuracy. This is because the accuracy of the local

models decreases in regions close to their boundaries. We suggest choosing S such that each

subdomain contains between 500 and 5000 data points. Based on our experiments, choosing an S

that results in subdomains with more than 5000 data points makes the parameter estimation of each

local model computationally inefficient. On the other hand, a value of S that results in subdomains

with less than 500 data points creates too many boundaries, which reduces the accuracy.

Next, we discuss Q, the number of control points on each boundary. As the dimension of the

input domain increases, we need to locate more control points to efficiently handle the boundary

conditions. We suggest setting Q proportional to the dimension of the boundary to effectively

cover the boundary spaces. Specifically, we use Q = qp−1, where p is the dimension of the domain

of data, and q determines the density of control points on each boundary space. Moreover, in

order to balance the computation time between training the subdomains, which is of O(Nm2),

and handling boundary conditions, which is of O(SQ3), we suggest (κ
2N2

S )
1

3p−3 as an upper bound

for q, which enforces O(SQ3) < O(Nm2). Theoretically, SPLK can be applied to even higher
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dimensional spaces, but as the dimension of the input domain increases, the upper bound for q

decreases, which means a more sparse distribution of the control points (Park and Apley, 2018).

Also, SPLK uses uniform distribution of control points on the boundaries (see Appendix F.1), which

might not be efficient in higher dimensions due to the sparsity of the control points. Therefore, we

do not recommend the application of SPLK to very high dimensional spaces. Our experiments in

Section F.2 show that choosing q ∈ [2, 3] provides satisfactory results in terms of both computation

time and accuracy.

As mentioned in Section 3.2, a small subset of data with size n is used to merely find a desired

direction for applying the cutting hyperplanes, and as such we suggest n � N . For our experi-

ments in Section 4, we choose n = 1000 to find the cutting direction through solving optimization

problem (20), which resulted in a small computational overhead.

Finally, for the choice of ∆, the average number of neighboring data points of each boundary,

we suggest setting δ = 0.1L, where L is the width of each subdomain, and δ is the maximum

distance of the neighboring data points to their associated boundary (see Section F.1). This choice

of δ ensures that the local data points reasonably close to the boundaries when training the bound-

ary functions. Moreover, assuming data points are uniformly disturbed in the input domain, we

set 100 < ∆ < 1000 for subdomains with sizes ranging between 500 and 5000, which reduces

computational overhead when training the boundary functions.

4 Experimental results

In this section, we apply SPLK to four real datasets and compare its performance with local proba-

bilistic regression (LPR) (Urtasun and Darrell, 2008), Bayesian committee machine (BCM) (Tresp,

2000), bagged Gaussian process (BGP) (Chen and Ren, 2009), partial independent conditional GP

(PIC) (Snelson and Ghahramani, 2007), DDM (Park et al., 2012), and PWK (Park and Apley,

2018). We use the BGP, LPR, BCM, and DDM implementations in the GPLP toolbox (Park

et al., 2012), PWK and BCM implementations provided by the authors of (Park and Apley, 2018)

and Schwaighofer and Tresp (2003) respectively. We also conduct sensitivity analysis of the param-

eters in SPLK and propose some guidelines for their selection.
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4.1 Datasets and evaluation criteria

We implement SPLK in MATLAB and test it on four real datasets:

1. The spatial dataset, TCO, which contains 65000 observations, collected by the NIMBUS7

satellite for NASA’s Total Ozone Mapping Spectrometer (TOMS) project (https://www.

nodc.noaa.gov). The global measurement was conducted on a two-dimensional grid, i.e.,

latitude and longitude, from 1978 to 2003 on a daily basis. We select the measurements of

“total column of ozone” on this grid for the data collected on January 1, 2003. The dataset

is highly non-stationary and an appropriate dataset for comparing SPLK and DDM because

it is constructed on a two-dimensional input space,

2. The spatial dataset, Levitus, which contains 56000 observations, is a part of the world ocean

atlas that measures the annual means of major ocean parameters (http://iridl.ldeo.

columbia.edu/SOURCES/.LEVITUS94). The global measurement was conducted on a three-

dimensional grid, i.e., latitude, longitude, and depth, in 1994. We select the “apparent oxygen

utilization” as the response variable on this grid.

Recalling that handling exogenous variables in spatial datasets also motivates this paper, we use a

third real dataset.

3. The spatial dataset, Dasilva, which contains 70000 observations, is a part of a five-volume at-

las series of Surface Marine Data (http://iridl.ldeo.columbia.edu/SOURCES/.DASILVA/

.SMD94/.halfbyhalf/.climatology/). The global measurement was conducted on a two-

dimensional grid, i.e., latitude and longitude, on a monthly basis in 1994. We select three

exogenous variables, “constrained outgoing heat flux”, “zonal heat flux”, and “sea minus air

temperature”, and the objective is to predict “long wave Chi sensitivity” based on the data

collected on January 1994.

Although SPLK was developed to handle spatial datasets, the methodology is general and can be

efficiently applied to non-spatial data that have a moderate number (say ten or fewer) of exogenous

variables. We use a fourth dataset to demonstrate the performance of SPLK on non-spatial data.

4. The non-spatial dataset, Protein, which contains 46000 measurements, is a collection of

Physicochemical Properties of Protein Tertiary Structure (http://archive.ics.uci.edu/
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ml/datasets/Physicochemical+Properties+of+Protein+Tertiary+Structure). This dataset

contains nine “physicochemical properties” of proteins as explanatory variables and “size of

the residue” as the response variable.

We randomly partition each dataset into 90% for training and 10% for testing. We use three

measures to evaluate the performance of each method. The first one is the measure of prediction

accuracy, which is assessed by the Mean Squared Error (MSE),

MSE =
1

T

T∑
i=1

(yi∗ − µi∗)2, (21)

where yi∗ is the noisy observation of the test location x∗ and µi∗ is the mean prediction of this

test location. The second measure is the Negative Log Predictive Density (NLPD) that takes into

account uncertainty in prediction in addition to accuracy, specifically

NLPD =
1

T

T∑
i=1

(yi∗ − µi∗)2

2(σi∗)
2

+ 0.5 log(2πσi∗
2
), (22)

where σ2
∗ is variance of the predictor at the test location x∗. The third measure is the computation

time, i.e., training plus testing time, that evaluates the success of SPLK in speeding up GPR. Note

that the computation time on its own is not an appropriate measure, and the corresponding MSE

or NLPD must also be taken into account, as a reduction in training time without an accurate

prediction is not useful. Finally, variable selection is beyond the scope of the current study, as we

assume that the input variables in each dataset are significant predictors which have passed the

variable selection process based on the domain knowledge or a statistical procedure.

4.2 Computation time and prediction accuracy

Here, we compare the computation time and the prediction accuracy of SPLK with those of the

competing algorithms. Specifically, we consider the MSE and NLPD as functions of the computa-

tion time and plot the set of best results for each algorithm. Under this criterion, the algorithm

associated with the curve closest to the origin will be superior. The parameter selection for each

algorithm is as follows.

For SPLK, we solve optimization problem (20) for each dataset to find the direction of the cuts.
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It turns out that for the spatial dataset the best direction, based on the criteria of optimization

problem (20), is one of the primary axes of the dataset domains: For dataset TCO, the best direction

is the direction of the first primary axis (i.e., latitude), for dataset Levitus, it is the direction of

the third primary axis (i.e., depth), and for dataset Dasilva, it is the direction of the first primary

axis (i.e., latitude). For dataset Protein, which is not a spatial dataset, the best direction is not the

direction of any of the primary axes of the input domain (see Section 4.3.2 for a discussion of cuts

in other directions). It is insightful to observe that for the spatial datasets used in this study the

solution to optimization problem (20) is aligned with one of the primary axes, which may reflect a

relationship between the response surface and the underlying geology. For example, for measuring

“long wave Chi sensitivity” in dataset Dasilva the direction of the fastest change is the same as

latitude; or for dataset Levitus, the covariance decays fastest when we change the depth of the

measurement for “apparent oxygen utilization.”

We use the guidelines discussed in Section 3.4 for choosing the tuning parameters. We choose

S from the set {20, 30, 40, 50, 60}, except for the dataset Levitus, to keep the number of local data

point in each subdomain between 500 and 5000. For Levitus, since we cut the domain of data from

the third direction with 33 distinct levels, we choose S from the set {8, 11, 16, 33}. Our experiments

in Section F.2 suggest that setting q to small values results in a good performance and increasing it

does not affect the algorithm’s accuracy much. Therefore, we set q = 3, for datasets TCO, Levitus,

and Dasilva, and q = 2.2 for dataset Protein. We also fix κ = 8 for all the datasets (see Section 4.3

for a discussion of varying values of κ). Note that as S increases, computation time decreases, so

the points with smaller computation times belong to larger values of S in Figures 1 and 2.

The tuning parameters for DDM are Q, the number of control points on each boundary, and

S, the number of subdomains. For the two-dimensional dataset TCO, we set Q = 3 and choose

S from the set {100, 200, 300, 400, 500, 600} to keep the average size of the subdomains between

100 and 600 as instructed in (Park et al., 2011). As expected, for smaller values of S, i.e., larger

subdomains, the efficiency of the algorithm deteriorates in terms of computation time; therefore,

the points with higher computation times belong to smaller values of S in Figures 1 and 2.

For PWK, the major tuning parameters are the number of boundary pseudo-observations, Q,

and the number of subdomains, S. Similar to DDM, PWK suggests keeping the average size of the

subdomains between 100 and 600; therefore, we choose the values of S from {100, 200, 300, 400, 500,
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600}. We also choose the value of Q from the set {3, 5, 7} as suggested in (Park and Apley, 2018).

Among the 18 possible combinations of S and Q, we choose five combinations that have different

computation times for the sake of clear demonstration. In Figures 1 and 2, those points with higher

computation times belong to smaller values of S.

PIC, which is the localized version of SPGP, has two tuning parameters, the number of local

models, S, and the number of pseudo-inputs, m. We use k-means clustering to partition the

domain of data into S local models. We note that m is the major tuning parameter that affects the

algorithm’s computation time. Therefore, we fix S to a reasonable value and choose the values of

m from the set {100, 200, 300, 400, 500, 600}. After testing various values of S in the range of 100

to 800, we find that S = 500 is a reasonable choice for our experiments. Therefore, we set S = 500

for all the four datasets. In Figures 1 and 2, those points with higher computation times belong to

larger values of m.

For BCM, we use k-means clustering to partition the domain of data into S local experts similar

to PIC and choose the values of S from the set {200, 300, 400, 500, 600, 700}. The points with higher

computation times belong to larger values of S in Figures 1 and 2.

LPR has three major tuning parameters, which are S, the number of local experts; m, the size of

each local expert; and R, the size of the subset used for local hyperparameter learning. The location

of R data points used for local hyperparameter learning can be chosen randomly or by clustering;

however, for the sake of fair comparison, we use clustering to choose these locations. Moreover, we

choose the values of S, m, and R from the sets {5, 10, 15, 20}, {100, 200, 300}, and {500, 1000, 1500},

respectively. For each dataset, we fix S to a value that results in better performance in terms of

computation time and MSE, and choose five combinations out of the nine possible combinations of

m and R that have different computation times.

Last, BGP has two tuning parameters, the number of bags, S, and the number of data points as-

signed to each bag, m. Based on our experiments, m is the major tuning parameter affecting the al-

gorithm’s computation time; therefore, we vary the values of m from the set {500, 600, 700, 800, 900}

and fix the value of S to a reasonable number. After varying the values of S in range 10 to 80, we

chose 40 as the fixed value of S. In Figures 1 and 2, those data points with higher computation

times belong to larger size bags.

For two-dimensional dataset TCO, SPLK, DDM, PWK, and BCM perform almost the same,
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but they are faster and more accurate than the other algorithms as shown in Figure 1a. However,

in terms of NLPD, SPLK, DDM, and PWK perform better than BCM as shown in Figure 2a. We

attribute the BCM’s higher NLPD values to underestimating the predictive variance in the BCM

algorithm. Also, despite the fact that SPLK uses a low-rank covariance approximation, it performs

as efficient as DDM and PWK, mainly because it creates fewer boundaries thus compensating for

the inaccuracy of the low-rank approximations in the subdomains. Note that for the other datasets,

we cannot compare the performance of DDM with the other competing algorithms, because DDM’s

implementation is restricted to one- or two-dimensional spaces.

For three-dimensional dataset Levitus, SPLK, LPR, and PWK outperform the other algorithms

in terms of MSE as shown in Figure 1b. However, in terms of NLPD, performance of SPLK and

PWK are superior (Figure 2b) meaning that SPLK and PWK obtain a better goodness of fit

compared to LPR.

For the five-dimensional dataset Dasilva, SPLK, PWK, and LPR outperform other competing

algorithms as shown in Figures 1c and 2c. Comparing these two algorithms however indicates that

SPLK can reach higher level of accuracy in terms of MSE, while the lower predictive variance gives

PWK better NLPD values. The performance of SPLK for this dataset can be better understood by

noting that as the covariance decays faster in one direction, which means as γ increases, partitioning

parallel to that direction reduces the prediction accuracy close to the boundaries. This is due to the

fact that the short range of covariance allows a higher degree of mismatch on the boundaries. This

has been shown through a simulation study in Section 5.1 of the paper by Park and Apley (2018).

However, because SPLK avoids partitioning along the direction of the largest γ, it partially reduces

the degree of mismatches on the boundaries. This becomes particularly helpful when the rates of

covariance decay highly differ in various directions, and as such SPLK performs better compared

to the other algorithms that do not consider covariance structure in partitioning the domain. In

fact, for the dataset Dasilva, the third, fourth, and fifth directions have relatively much lower rates

of covariance decay compared to the first two directions. We further investigate this hypothesis by

comparing the performance of the competing algorithms on a simulated dataset having a similar

covariance structure to Dasilva in Appendix G.

Finally, for nine-dimensional dataset Protein, SPLK, PIC, and PWK perform much better than

the other algorithms as shown in Figures 1d and 2d. However, similar to the analysis of TCO and
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Levitus, the lower NLPD values of SPLK and PWK make them more desirable than PIC. We note

that unlike the other datasets in this study, we do not set the density parameter κ to 3, since 38

control points on each boundary slow down the SPLK’s performance without having a significant

effect on accuracy (see Section F.2). Therefore, we set q to a smaller value of 2.2.
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(a) TCO:κ = 6, S ∈ {20, 30, 40, 50, 60}, q = 3
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(b) Levitus:κ = 8, N ∈ {8, 11, 16, 33}, q = 3
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(c) Dasilva:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 3
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(d) Protein:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 2.2

Figure 1: MSE versus computation time. For DDM, Q = 3 and S ∈ {100, 200, 300, 400, 500};
for PWK, (Q,S) ∈ {3, 5, 7} ⊗ {100, 200, 300, 400, 500}; for PIC, S = 500 and m ∈
{100, 200, 300, 400, 500, 600}; for BCM, S ∈ {200, 300, 400, 500, 600, 700}; for LPR, (S,m,R) ∈
{5, 10, 15, 20} ⊗ {100, 200, 300} ⊗ {500, 1000, 1500}; and for BGP, S = 40 and m ∈
{500, 600, 700, 800, 900}

4.3 Sensitivity analysis

This section describes the sensitivity analysis we conduct on the tuning parameters of SPLK.

Section 4.3.1 discusses some guidelines for selecting the size of the subdomains and the density of

local pseudo-inputs. Section 4.3.2 explains the significance of cutting from various directions. We

discuss the effect of the number of control points in Section F.2.
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(a) TCO:κ = 6, S ∈ {20, 30, 40, 50, 60}, q = 3

100 200 300 400 500 600 700

2

4

6

8

10

12

14

16

Time

NL
PD

 

 
SPLK
BCM
BGP
PIC
LPR
PWK

(b) Levitus:κ = 8, N ∈ {8, 11, 16, 33}, q = 3
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(c) Dasilva:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 3
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(d) Protein:k = 8, N ∈ {20, 30, 40, 50, 60}, q = 2.2

Figure 2: NLPD versus computation time. For DDM, Q = 3 and S ∈ {100, 200, 300, 400, 500};
for PWK, (Q,S) ∈ {3, 5, 7} ⊗ {100, 200, 300, 400, 500}; for PIC, S = 500 and m ∈
{100, 200, 300, 400, 500, 600}; for BCM, S ∈ {200, 300, 400, 500, 600, 700}; for LPR, (S,m,R) ∈
{5, 10, 15, 20} ⊗ {100, 200, 300} ⊗ {500, 1000, 1500}; and for BGP, S = 40 and m ∈
{500, 600, 700, 800, 900}

4.3.1 Number of cuts and local pseudo-inputs

In this section, we show the trade-off between accuracy and computation time for the choices of

m and S. In our experiment, for each dataset, we vary the number of subdomains, S, and the

density of local pseudo-inputs, κ, and use the values of MSE, NLPD, and computation time as the

measures of efficiency. To illustrate the effect of various settings on the algorithm’s efficiency, we

plot the values of MSE, NLPD, and computation time for varying S and a fixed k as shown by the

curves in Figures 3 and 4.

Figures 3e, 3f, 4e, and 4f show that as S increases, i.e., the size of the subdomains decreases,

SPLK performs faster for a fixed value of κ. Moreover, the curves belonging to smaller values of

κ are always below the curves with larger values of κ, meaning that as the density of the pseudo-

inputs increases, the algorithm becomes slower. Consequently, the algorithm takes longer to run

by increasing the size of subdomains or the number of local pseudo-inputs.

24



On the other hand, Figures 3a, 3b, 4a, and 4b show a positive correlation between S and MSE,

i.e., by fixing the value of κ, SPLK performs more accurately in terms of MSE, as the size of the

subdomains increases. Moreover, the curves belonging to larger values of κ are always above the

curves with lower values of κ, i.e., as κ increases, SPLK becomes more accurate for a fixed value of

S. Figures 3c, 3d, 4c, and 4d show the same trend for the values of NLPD. Therefore, we conclude

that our algorithm attains higher accuracy in terms of MSE and NLPD by increasing the density

of local pseudo-inputs or enlarging the size of the subdomains.

In summary, by increasing the size of the subdomains or the density of local pseudo-inputs,

the algorithms accuracy improves, but computation time increases. Therefore, we suggest using

sufficiently large values of κ in smaller subdomains, because, as shown in Figures 3 and 4, the MSEs

are small even with a large number of subdomains and computation times stay relatively low.

4.3.2 Direction of cuts

This section demonstrates how cutting from different directions affects SPLK’s performance. To

discuss the significance of cutting from the direction obtained from optimization (20), we fix the

value of S and vary the values of κ and the direction of cuts for each dataset, and measure the

accuracy of prediction in terms of MSE. Note that since there is an infinite number of directions

of cuts, for the sake of comparison, we only consider the best direction, i.e., the direction found

through solving optimization problem (20), along with the directions of primary axes of the input

space for each dataset. In Figure 5, each curve shows the trend of changes in MSE for a particular

direction and the varying values of κ.

For dataset TCO, the direction of cuts is the direction of the first primary axis as shown in

Figure 5a. Cutting from this direction attains higher accuracy for the varying values of κ compared

to the direction of the second primary axis.

For dataset Levitus, the direction of cuts is the direction of the third primary axis as shown in

Figure 5b. Cutting from this direction attains higher accuracy compared to the directions of the

other primary axes.

For dataset Dasilva, the direction of cuts is the direction of the first primary axis as shown in

Figure 5c. Cutting from this direction attains a much higher accuracy compared to the directions of

the third, forth, and fifth primary axes. However, the performance of cutting from the direction of
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Figure 3: MSE, NLPD, and computation time versus S. Each curve is associated with a value of
κ.

the second primary axis is almost the same as the direction that we find through solving optimization

problem (20). This can be justified by considering the objective values of optimization (20) for these

two directions. In fact, the objective values for the directions of the first and the second primary

axes are very close and much smaller than the other directions. Therefore, we observe such a

similar and much accurate performance by cutting from these two directions compared to the other

directions.

Finally, for dataset Protein, the direction of cuts, which is not the direction of one of the primary

axes of the input domain, is compared with the directions of the first six primary axes as shown in

Figure 5d. Cutting from the direction found by solving optimization problem (20) attains a much
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Figure 4: MSE, NLPD, and computation time versus S. Each curve is associated with a value of
κ.

higher accuracy compared to the directions of the second and the third primary axes, and slightly

better than the direction of the sixth primary axis.

5 Summary

GPR is a powerful tool in the analysis of spatial systems, but it does not scale efficiently to

large datasets. In addition, many spatial datasets have highly heterogeneous covariance struc-

tures which cannot be modeled effectively with a single covariance function, and the problem is

exacerbated when the spatial data contains environmental variables. This paper proposed Sparse

27



2 2.5 3 3.5 4 4.5 5
11

12

13

14

15

16

17

18

19

20

κ

MS
E

 

 

1st(optimal)

2nd

(a) TCO:S = 30, Q = 3

2 3 4 5 6 7 8
5

10

15

20

25

30

κ

MS
E

 

 

1st

2nd

3rd(optimal)

(b) Levitus:S = 11, Q = 9

2 3 4 5 6 7 8
0

2

4

6

8

10

12

14

16

κ

MS
E

 

 

1st(optimal)

2nd

3rd

4th

5th

(c) Dasilva:S = 40, Q = 81

2 3 4 5 6 7 8
16

17

18

19

20

21

22

23

24

25

26

κ

MS
E

 

 

1st

2nd

3rd

4th

5th

6th

Optimal

(d) Protein:S = 40, Q = 500

Figure 5: Effects of cutting directions on MSE for the four datasets

Pseudo-input Local Kriging (SPLK), which simultaneously addressed scalability and heterogeneity

by partitioning the data domain into subdomains. The partitioning used parallel hyperplanes to

create non-overlapping subdomains and fitted a sparse GPR to the data within each subdomain,

which allowed the selected partitions to have large numbers of data points. Two theorems were

proposed, and an algorithm was developed to find the desired hyperplanes, which resulted in more

accurate approximations of the covariance structures in each subdomain. SPLK also alleviated the

discontinuity of the overall prediction surface by putting control points on the boundary of neigh-

boring partitions. SPLK was applied to a spatial dataset with exogenous variables, two spatial

datasets without exogenous variables, and a non-spatial dataset. The latter demonstrated that the

methodology was general and was not restricted to spatial datasets. The results showed that SPLK

maintained a good balance between prediction accuracy and computation time.

The limitations of SPLK could be better understood by using a larger number of real spatial

datasets with exogenous variables. We also suggest four paths for future research. First, more flex-

ible cuts, such as parallel hyper-curves or concentric hyper-spheres which give the same number of

boundaries created by parallel hyperplanes, could be used. Second, from a theoretical perspective,
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theories that provide the relationship between the expected covariance function and expected error

in the low-rank covariance approximation should be developed under less restrictive assumptions.

Third, the value of κ, the tuning parameter that determines the density of pseudo-inputs in each

subdomain, could potentially be determined with more rigorous approaches such as using an es-

timated rate of eigenspectrum reduction of the covariance matrix. Finally, the proposed method

could benefit from more sophisticated techniques for sampling control points, as opposed to using a

uniform distribution. This would especially improve the models performance on higher-dimensional

problems, in which the density of control points decreases close to the boundaries.
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Appendix A Solving optimization problem (11)

Due to the convex objective function and affine constraints of optimization problem (11), the duality

gap between the primal and dual problems of (11) is zero by Lagrange duality principle (Bazaraa

et al., 2013). This allows us to transform the optimization problem (11) to an unconstrained

optimization problem and maximize the Lagrangian of (11) instead,

max
us(x∗),λs(x∗)

L(us(x∗),λs(x∗)) = us(x∗)
T (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)us(x∗) (23)

−2us(x∗)
T k̃sXsx∗ −

∑
i=1:|Bs|

λis(x∗)(us(bi)
Tys −R(bi)),

where |Bs| is the number of all the control points located on the boundaries of subdomain Ωs, and

λs(x∗) = [λ1s(x∗), . . . , λ|Bs|s(x∗)]
T is the vector of the Lagrange multipliers.

Assuming us(x∗) depends on the covariance between x∗ and Xs, and λis(x∗) depends on the

covariance of bi and x∗, we write us(x∗) = Hsk̃
s
Xsx∗

and λis(x
∗) = βisk̃

s
bix∗

as suggested in (Park

et al., 2011), where Hj is a squared matrix with size equal to the number of data points in Ωs, and

βis is the Lagrange parameter associated with λis that does not depend on x∗. Consequently, we

rewrite Lagrangian (23) as

max
Hs,βs

L(Hs,βs) = k̃sx∗Xs
HT
s (K̃s

XsXs
+ diag(KXsXs − K̃s

XsXs
) + σ2

sIs)Hsk̃
s
Xsx∗ (24)

−2k̃sx∗Xs
HT
s k̃sXsx∗ − k̃sx∗Bs

βs(K̃
s
BsXs

HT
s ys − rs),

where βs is a diagonal matrix with diagonal elements β1s, . . . , β|Bs|s, and rs = [R(b1), . . . ,R(b|Bs|)]
T

is the vectors of boundary values of Ωs.

Due to convexity of function (24) we can calculate the optimal values of Hs and βs analytically

by writing out the first order necessary conditions,

dL(Hs,βs)

dHs
= 2(GsHs − Is)k̃

s
Xsx∗ k̃

s
x∗Xs

− ysk̃
s
x∗Bs

βsK̃
s
BsXs

= 0, (25)

dL(Hs,βs)

dβis
= k̃biXsH

T
s yj − ris = 0 ∀i ∈ [|Bs|], (26)

where Gs = (K̃s
XsXs

+ diag(KXsXs − K̃s
XsXs

) + σ2
sIs), and ris is the ith element of the vector rs.
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Reordering equation (25),

(k̃sx∗Xs
+ 0.5(k̃jx∗Xs

k̃jXsx∗
)−1k̃jx∗Xs

K̃j
XsBs

βsk̃
j
Bsx∗

yTs )G−1
s ys = k̃sx∗Xs

HT
s ys, (27)

and evaluating it at the boundary locations gives the system of equations with |Bs| equations and

Lagrangian parameters,

(k̃sbiXs
+ 0.5(k̃sbiXs

k̃sXsbi
)−1k̃sbiXs

K̃s
XsBs

βsk̃
s
Bsbi

yTs )G−1
s ys = ris ∀i ∈ [|Bs|]. (28)

After some simple matrix algebra, we obtain the solution to the system of linear equations (28),

βs =
Is(rs − K̃s

BsXs
G−1
s ys){[(diag(K̃s

BsXs
K̃s

XsBs
))−1(K̃s

BsXs
K̃s

XsBs
)] ◦Ks

BsBs
}−1

0.5yTs G−1
s ys

. (29)

Using the values of βs from (29), we can easily obtain the solution to u(x∗) from (25),

u∗s(x∗) = Hsk̃
s
Xsx∗ = G−1

s (k̃sXsx∗ + ws), (30)

where ws = 0.5(k̃sx∗Xs
k̃sXsx∗

)−1ysk̃
s
x∗Bs

βsK̃
s
BsXs

k̃sXsx∗
.

Appendix B Derivation of low-rank covariance approximation er-

ror

We follow the procedure proposed in (Smola and Schölkopf, 2000) to derive the low-rank covariance

approximation error in each subdomain Ωs. In this derivation, given the covariance function φ(·, ·) :

Ωs × Ωs → R as a symmetric positive semidefinite kernel, we intend to approximate the kernel

φ(x, ·) : Ωs → RΩs centered at z ∈ Ωs as a linear combination of kernels centered at each element

of Xs, i.e.,

φ(z, ·) ≈
∑
i∈[ms]

ciφ(x̃i, ·). (31)
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To this end, let H be a reproducing kernel Hilbert space (RKHS) that is defined as the space of

functions constructed by the span of φ(x, ·) centered at a finite number of elements of Ωs, i.e.,

{∑
i∈[n]

αiφ(xi, ·) : n ∈ N,xi ∈ Ωs, ci ∈ R

}
.

H is also equipped with the inner product

〈 ∑
i∈[n1]

αiφ(xi, ·),
∑
j∈[n2]

βjφ(xj , ·)
〉
H

=
∑
i∈[n1]

∑
j∈[n2]

αiβjφ(xi,xj), (32)

which, for any function f ∈ H, induces the norm

||f ||2H =< f, f >H . (33)

Given suchH, a natural criterion to find an approximation for the covariance function is to minimize

the norm of function φ(z, ·)−
∑

i∈[ms]
ciφ(x̃i, ·), which belongs to H, that is

min
c

∥∥∥∥∥∥φ(z, ·)−
∑
i∈[ms]

ciφ(x̃i, ·)

∥∥∥∥∥∥
2

H

, (34)

where c = [c1, . . . , cms ]
T . Assuming φ(z, z) = h, objective function (34) can be expanded after

plugging in (32) and (33) as

min
c

h− 2cTkX̃sz
+ cTKX̃sX̃s

c,

which has the solution c∗ = K−1
X̃sX̃s

kX̃sz
. Therfore, the approximation of φ(z, ·) becomes kzX̃s

K−1
X̃sX̃s

kX̃sz
,

and the error of covariance approximation becomes

h− kzX̃s
K−1

X̃sX̃s
kX̃sz

.

We finally note that using z = xi for all xi ∈ Xs in objective function (34) and minimizing the

sum over all terms obtains KXsX̃s
K−1

X̃sX̃s
KX̃sXs

, which is the low-rank approximation of KXsXs in

equation (7).
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Appendix C Proof of Theorems

C.1 Proof of Proposition 1

Proof. For any i ∈ [ms], let ui denote the covariance vector between z and the first i elements

of X̃s, and let vi denote the covariance vector between the (i + 1)th element of X̃s and the first

i elements of X̃s. That is, ui = [φ(z, x̃1), . . . , φ(z, x̃i)]
T , and vi = [φ(x̃i+1, x̃1), . . . , φ(x̃i+1, x̃i)]

T .

Also let Ki denote the covariance matrix between the first i elements of X̃s themselves. We now

prove by induction on i. For the base case, i.e, i = 1, the claim clearly holds,

EΩs(u
T
1 K−1

1 u1) = EΩs(φ(z, x̃1)φ(x̃1, x̃1)−1φ(z, x̃1)) =
1

h
EΩs(φ

2(z, x̃1)) =
1

h
EΩs(φ

2(x,x′)). (35)

Suppose the claim holds for ms − 1, we show that it also holds for ms. Expanding uTmsK
−1
msums

gives

uTmsK
−1
msums =

[
uTms−1 φ(z, x̃ms)

]Kms−1 vms−1

vTms−1 h


−1  ums−1

φ(z, x̃ms)

 (36a)

=

[
uTms−1 φ(z, x̃ms)

]K−1
ms−1 + cK−1

ms−1vms−1v
T
ms−1K

−1
ms−1 −cK−1

ms−1vms−1

−cvTms−1K
−1
ms−1 c


 uTms−1

φ(z, x̃ms)


(36b)

= uTms−1K
−1
ms−1ums−1 +

(vTms−1K
−1
ms−1ums−1)2 + φ2(z, x̃ms)− 2vTms−1K

−1
ms−1ums−1φ(z, x̃ms)

c

(36c)

= uTms−1K
−1
ms−1ums−1 +

(vTms−1K
−1
ms−1ums−1 − φ(z, x̃ms))

2

c
(36d)

≥ uTms−1K
−1
ms−1ums−1. (36e)

where equality (36b) follows from the block matrix inversion lemma (Hager, 1989), and c = (h −

vTms−1K
−1
ms−1vms−1)−1, which is always non-negative.

By (36) and the induction step,

EΩs(u
T
msK

−1
msums) ≥ EΩs(u

T
ms−1K

−1
ms−1ums−1) ≥ 1

h
EΩs(φ

2(x,x′)). (37)
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C.2 Proof of Theorem 1

First, we prove the following lemma

Lemma 3. For the random variables z1 ∼ U(a, a + e) and z2 ∼ U(b, b + e), where a ≤ b and

a, b, e ≥ 0, define v = (z1 − z2)2. Then Ev(exp(−cv)) ≤ Ev(exp(−cv) | a = b) for any c > 0.

Proof. Let z = z1 − z2, then by convolution of probability distributions, we have:

fz(t) =

∫ +∞

−∞
fz1(t+ z2)fz2(z2)dz2 =

1

e

∫ b+e

b
fz1(t+ z2)dz2, (38)

where the last equation follows from the fact that fz2 = 1
e if b ≤ z2 ≤ b+e. Note that the integrand

fz1(z + z2) is zero unless a ≤ t+ z2 ≤ a+ e, which implies a− t ≤ z2 ≤ a+ e− t. Figure 6 shows

the region defined by a − t ≤ z2 ≤ a + e − t and b ≤ z2 ≤ b + e, for the case that a + b < e and

a+ e > b. In the both cases, integration (38) can be calculated as follows:

fz(t) =


1
e2

∫ t
a−e−d dz2 a− b− e ≤ t < a− b

1
e2

∫ a−e
t dz2 a− b ≤ t ≤ a− b+ e

=


1
e2

(t+ b− a+ e) a− b− e ≤ t < a− b

−1
e2

(t+ b− a− e) a− b ≤ t ≤ a− b+ e.

(39)

Figure 6: The region defined by a− t ≤ z2 ≤ a+ e− t and b ≤ z2 ≤ b+ e. Left panel corresponds
to the case when a+ b > e and right panel corresponds to the case when a+ e < b.
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Hence, Fv(t) = p(v ≤ t) = p(z2 ≤ t) = p(
√
t ≤ z ≤

√
t) can be written as

Fv(t) =



2
√
t

e2
(a− b+ e) 0 ≤

√
t < b− a,

1
e2

(2
√
te− t− (a− b)2) b− a ≤

√
t < a− b+ e,

1− 1
2e2

(
√
t+ a− b− e)2 a− b+ e ≤

√
t ≤ b− a+ e.

(40)

Moreover, Gv(t) = p(v ≤ t | a = b) = p(z2 ≤ t | a = b) = p(
√
t ≤ z ≤

√
t | a = b) can be derived by

setting a = b in CDF (40)

Gv(t) =
1

e2
(2
√
te− t) 0 ≤

√
t ≤ e. (41)

Comparing Gv(t) and Fv(t) for all possible values of t gives

•
√
t < 0: Gv(t) = Fv(t) = 0.

• 0 ≤
√
t < b−a: then Fv(t)−Gv(t) = 1

e2
(2
√
t(a− b) + t). Since

√
t < b−a⇒ t <

√
t(b−a)⇒

t+
√
t(a− b) < 0⇒ t+ 2

√
t(a− b) < 0⇒ Fv(t)−Gv(t) < 0⇒ Fv(t) < Gv(t).

• b−a ≤
√
t < a−b+e: then Fv(t)−Gv(t) = − (a−b)2

e2
< 0⇒ Fv(t)−Gv(t) < 0⇒ Fv(t) < Gv(t).

• a− b+ e ≤
√
t < e: then Fv(t)−Gv(t) = 1− 1

2e2
(
√
t+ a− b− e)2 + 1

e2
(t− 2

√
te).

Note that e(Fv(t)−Gv(t))
et = 1

2e2
(1− a−b+e√

t
) > 0, and therefore, Fv(t)−Gv(t) is a monotonically

increasing function. Due to the monotonicity of Fv(t)−Gv(t), the maximum occurs at e, so

maxt Fv(t)−Gv(t) = Fv(e)−Gv(e) = − (a−b)2

e2
< 0. Therefore, Fv(t)−Gv(t) ≤ Fv(e)−Gv(e) <

0⇒ Fv(t) ≤ Gv(t).

• e ≤
√
t < b− a+ e: in this case Gv(t) is always 1, hence, Fv(t) ≤ Gv(t).

• b− a+ e ≤
√
t: in this case Gv(t) = Fv(t) = 1

Therefore, we can conclude that

p(v ≤ t) ≤ p(v ≤ t | a = b) ∀t ∈ R⇒ p(−cv ≥ t′) ≤ p(−cv ≥ t′ | a = b) ∀t′ ∈ R and c > 0,

which implies that random variable (−cv) is stochastically less than random variable (−cv | a = b),
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i.e., −cv �st −cv | a = b. Consequently, the expectation of any non-decreasing function of these

two variables are ordered, i.e., Ev(exp(−cv)) ≤ Ev(exp(−cv) | a = b) for any c > 0.

To proceed to the proof of Theorem 1, we use the following characterization for the cutting

hyperplanes and subdomains. Assuming that the cutting hyperplanes are equidistant with distant

W = L/S from each other, we can characterize the `th ∈ [S − 1] cutting hyperplane on Ω with

respect to kth primary axis of Rp using the vector of angles θ = {θ1, . . . , θp}\{θk},

Hθ,k,W,` = {x ∈ Ω | xk −
∑

j∈[p]\{k}

tan(θj)xj − `W = 0} ∀` ∈ [S − 1]. (42)

Note that this cutting hyperplane is orthogonal to the axis k only if θ = 0, that is θj = 0 for

j ∈ [p]\{k}.

Denoting, respectively, the hyperplanes containing the “bottom” and the “top” faces of Ω as

Hθ,k,W,0 = {x ∈ Ω | xk = 0} and Hθ,k,W,S = {x ∈ Ω | xk − L = 0},

we define the sth subdomain as the intersection of area between two consecutive hyperplanes and

Ω, specifically,

Ωθ,k,W,s = {x ∈ Ω | min
x′∈Hθ,k,W,s−1

||x− x′||2 ≤W and min
x′∈Hθ,k,W,s

||x− x′||2 ≤W}, (43)

where ‖ · ‖2 denotes the Euclidean norm.

Proof of Theorem 1. Let x{k} = {x1, . . . , xp}\{xk} for any x ∈ Ω. Then, based on how each

Ωθ,k,W,s in (43) is constructed and considering the distribution of the data points in Ω according

to (16), all variables xj ∈ x{i} are independent and have the uniform distribution U(0, L). Moreover,

by the definition of the hyperplanes in (42), and given x{k}, the corresponding values of the variable

xk on the hyperplanes Hθ,k,W,s−1 and Hθ,k,W,s are

∑
j∈[p]\{k}

tan(θj)xj + (s− 1)w &
∑

j∈[p]\{k}

tan(θj)xj + sw. (44)

Therefore, the conditional distribution xk|x{k} in the parallelogram subdomain Ωθ,k,W,s has a uni-
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form distribution whose support is bounded by the values calculated in (44). Consequently, given

a parallelogram subdomain Ωθ,k,W,s, for any x ∈ Ωθ,k,W,s−1,

xj ∼ U(0, L) ∀j ∈ [p]\{k}, (45a)

xi|xi ∼ U
( ∑
j∈[p]\{k}

tan(θj)xj + (s− 1)w,
∑

j∈[p]\{k}

tan(θj)xj + sw

)
. (45b)

Now that we have the distribution (45), we expand EΩθ,k,W,s

(
φ(x,x′)

)
by conditioning, that is

EΩθ,k,W,s

(
φ(x,x′)

)
= Ex{k},x

′
{k}

(
Exk,x′k

(
φ(x,x′) | x{k},x′{k}

))
(46a)

= Ex{k},x
′
{k}

(
exp

(
−

∑
j∈[p]\{k}

γj(xj − x′j)2

)
Exk,x′k

(
exp

(
− γk(xk − x′k)2

)
| x{k},x′{k}

))
(46b)

= Ex{k},x
′
{k}

(
g(x{k},x

′
{k})h(x{k},x

′
{k})

)
. (46c)

Note that the function g(x{k},x
′
{k}) is always positive and independent of θ, and function

h(x{k},x
′
{k}) is positive that attains its maximum for any given x{k},x

′
{k} at θ = 0 by Lemma (3).

Therefore, θ = 0,

g(x{k},x
′
{k})h(x{k},x

′
{k}) ≤ g(x{k},x

′
{k})h(x{k},x

′
{k} | θ = 0) ∀x{k},x′{k},

which results in

EΩθ,k,W,s

(
φ(x,x′)

)
≤ EΩθ,k,W,s

(
φ(x,x′) | θ = 0

)
⇒ arg max

θ
EΩθ,k,W,s

(
φ(x,x′)

)
= 0.

C.3 Proof of Theorem 2

First, we prove the following lemma

Lemma 4. Ez1,z2
(

exp
(
− c(z1 − z2)2

))
=
∫ b2

0 exp(−ct)( 1
b
√
t
− 1

b2
)dt, where z1, z2

i.i.d∼ U(a, a+ b).
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Proof. Let v = (z1 − z2)2, then Philip (2007) shows that v has the following PDF:

fv(t) =
1√
tb
− 1

b2
∀ 0 ≤ t ≤ b2;

therefore,

Ez1,z2
(

exp
(
− c(z1 − z2)2

))
= Ev

(
exp(−cv)

)
=

∫ b2

0
exp(−ct)fs(t)dt =

∫ b2

0
exp(−ct)( 1

b
√
t
− 1

b2
)dt.

Proof of Theorem 2. By the assumptions of uniform distribution of points in Ω (16), and inde-

pendence of the dimensions due to geometry of Ω0,k,W,s, for any x ∈ Ω0,i,W,s,

xk ∼ U
(
(s− 1)W, sW

)
& xj ∼ U

(
0, L

)
∀j ∈ [p]\{k}. (47)

Letting Gk = EΩ0,k,W,s
(φ(x,x′)), and using distribution (47),

Gk = Exk

(
exp

(
− γk(xk − x′k)2

)) ∏
j∈[p]\{k}

Exj
(

exp
(
− γj(xj − x′j)2

))
(48a)

= Evk

(
exp(−γkvk)

) ∏
j∈[p]\{k}

Evj
(

exp(−γjvj)
)

(48b)

=

(∫ W 2

0
exp(−γkt)(

1

W
√
t
− 1

W 2
)dt

)( ∏
j∈[p]\{k}

(∫ L2

0
exp(−γjt)(

1

L
√
t
− 1

L2
)dt

))
(48c)

=

(∫ W 2

0
gWk (t)dt

)( ∏
j∈[p]\{k}

(∫ L2

0
gLj (t)dt

))
, (48d)

where equality (48a) follows from the independence of dimensions in each Ω0,i,W,s, equalities (48b)

and (48c) follow from Lemma (4) with fvk(t) = 1√
tW
− 1

W 2 0 ≤ t ≤W 2 and fvj (t) = 1√
tL
− 1

L2 0 ≤

t ≤ L2, and gm` (t) = exp(−γ`t)( 1
m
√
t
− 1

m2 ) in (48d).

To show that Gp −Gk ≥ 0 for any k ∈ [p], We first expand Gp −Gk,

Gp −Gk =

(∫ W2

0

gWp (t)dt

)( ∏
j∈[p]\{p}

(∫ L2

0

gLj (t)dt

))
−

(∫ W2

0

gWk (t)dt

)( ∏
j∈[p]\{k}

(∫ L2

0

gLj (t)dt

))
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=

( ∏
j∈[p]\{k,p}

(∫ L2

0

gLj (t)dt

))(∫ W2

0

gWp (t)dt

∫ L2

0

gLk (t)dt−
∫ W2

0

gWk (t)dt

∫ L2

0

gLp (t)dt

)
= A ∗B.

Note that A is always positive, since each
∫ L2

0 gLj (t)dt is the expectation of the random variable

exp(−γjvj) which is positive. Hence, it is enough to show that B is positive. Expanding B further,

B =

(∫ W2

0

gWp (t)dt

)(∫ W2

0

gLk (t)dt+

∫ L2

W2

gLk (t)dt

)
−
(∫ W2

0

gWk (t)dt

)(∫ W2

0

gLp (t)dt+

∫ L2

W2

gLp (t)dt

)
(49a)

=

∫ W2

tk:0

∫ W2

tp:0

gWp (tk)g
L
k (tp)dtkdtp +

∫ W2

tk:0

∫ L2

tp:W2

gWp (tk)g
L
k (tp)dtkdtp

−
∫ w2

tk:0

∫ w2

tp:0

gwk (tk)g
L
p (tp)dtkdtp −

∫ w2

tk:0

∫ L2

tp:w2

gwk (tk)g
L
p (tp)dtkdtp (49b)

=

∫ W2

tk:0

∫ W2

tp:0

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)( 1

W
√
tk
− 1

W 2

)( 1

L
√
tp
− 1

L2

)
dtkdtp

+

∫ W2

tk:0

∫ L2

tp:W2

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)( 1

W
√
tk
− 1

W 2

)( 1

L
√
tp
− 1

L2

)
dtkdtp (49c)

=

∫ W2

tk:0

∫ W2

tp:0

c(tk, tp)dtkdtp +

∫ W2

tk:0

∫ L2

tp:W2

c(tk, tp)dtkdtp. (49d)

Note that for any member of set

{(W,L, tp, tk, γp, γk) | 0 < W < L, 0 < γk < γp, 0 ≤ tk ≤W 2, W 2 ≤ tp ≤ L2}, (50)

we have

( 1

w
√
tk
− 1

w2

)( 1

L
√
tp
− 1

L2

)
> 0, (51)

and also

(−γptk − γktp)− (−γktk − γptp) = (γp − γk)(tp − tk) > 0, (52)

where the latter results in

exp(−γptk − γktp)− exp(−γktk − γptp) > 0. (53)

Therefore, by (51) and (53), the integrand c(tk, tp) in (49d) is positive for any member of
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set (50), so is integral
∫W 2

tk:0

∫ L2

tp:W 2 c(tk, tp)dtkdtp. Hence, to complete the proof we need to show

integral
∫ w2

tk:0

∫ w2

tp:0 c(tk, tp)dtkdtp in (49d) is also positive. To show this, we expand the integral,

∫ W2

tk:0

∫ W2

tp:0

c(tk, tp)dtkdtp =

∫ W2

tk:0

∫ W2

tp:tk

c(tk, tp)dtkdtp +

∫ W2

tp:0

∫ W2

tk:tp

c(tk, tp)dtpdtk (54a)

=

∫ W2

tk:0

∫ W2

tp:tk

c(tk, tp)dtkdtp +

∫ W2

tk:0

∫ W2

tp:tk

c(tp, tk)dtkdtp =

∫ W2

tk:0

∫ W2

tp:tk

(
c(tk, tp) + c(tp, tk)

)
dtkdtp (54b)

=
1

wL

∫ W2

tk:0

∫ W2

tp:tk

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)
(

1√
tk
− 1√

tp
)(

1

W
− 1

L
)dtkdtp. (54c)

Similar to (50)-(53), for any member of set

{(W,L, tp, tk, γp, γk) | 0 < W < L, 0 < γk < γp, 0 ≤ tk ≤W 2, tk ≤ tp ≤W 2}, (55)

we have ( 1√
tk
− 1√

tp
) > 0, ( 1

W −
1
L) > 0, and

(
exp(−γptk − γktp)− exp(−γktk − γptp)

)
> 0. Hence

the integrand in (54c) is positive for any member of set (55), so is integral (54c), and the proof is

complete.

Appendix D A simulation study on the relation between expected

error (15) and EΩs
(φ2(x,x′))

Consider the squared exponential Gaussian kernel φ(x, x′) = exp(−γ(x− x′)2) with γ > 0 defined

on

Ωs = {x ∈ R|a ≤ x ≤ a+ b} (56)

with uniform sampling distribution

x ∼ U(a, a+ b) ∀x ∈ Ωs. (57)

To have a general simulation study, we need the following lemma.

Lemma 5. Ez1,z2
(

exp
(
− c(z1−z2)2

))
, where z1, z2

i.i.d∼ U(a, a+ b), is a monotonically decreasing
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function of c and b.

Proof. We need to show that ∇g(b, c) = [∂g(b,c)∂b , ∂g(b,c)∂c ]T < 0 for all [b, c]T > 0, where

g(b, c) = Ez1,z2
(

exp
(
− c(z1 − z2)2

))
=

∫ b2

0
exp(−ct)( 1

b
√
t
− 1

b2
)dt

by Lemma 4.

We can write ∂g(b,c)
∂b as

∂g(b, c)

∂b
=

1

b2

∫ b2

0
exp(−ct)(2

b
− 1√

t
)dt (58a)

=
1

b2

([
exp(−ct)(2t

b
− 2
√
t)

]b2
0

−
∫ b2

0
−c exp(−ct)(2t

b
− 2
√
t)

)
(58b)

=
2c

b2

∫ b2

0
exp(−ct)( t

b
−
√
t), (58c)

where equalities (58a) and (58b) follow from the Leibniz integral differentiation and the integration

by part rules, respectively. It is easy to check that integrand exp(−ct)( tb −
√
t) is always negative

for any member of set {(b, c, t) | 0 < b, 0 < c, 0 ≤ t ≤ b2}; therefore, we always have ∂g(b,c)
∂b < 0.

Moreover, for ∂g(b,c)
∂c ,

∂g(b, c)

∂c
=

∫ b2

0
−t exp(−ct)( 1

b
√
t
− 1

b2
)dt =

−1

b

∫ b2

0
t exp(−ct)( 1√

t
− 1

b
)dt.

It is again easy to check that the integrand t exp(−ct)( 1√
t
− 1

b ) is positive for any member of set

{(b, c, t) | 0 < b, 0 < c, 0 ≤ t ≤ b2}. Therefore, ∂g(b,c)
∂c is always negative.

By Lemma 5, expectation function

EΩs(φ
2(x,x′)) = Ex,x′(exp(−2γ(x− x′)2) (59)

is a monotonically decreasing function of γ and b. This means that there are only two ways to

increase expectation EΩs(φ
2(x,x′)), which are either decreasing γ or decreasing b. The approxi-

mation of expected error function (15) on domain (56) and sampling distribution (57) for varying

values of γ and b and a fixed value of ms using a heat map plot is shown in Figure 7. We observe
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that as the values of γ or b decrease, or equivalently, EΩs(φ
2(x,x′)) increases, the approximation

of the expected error function decreases.

Figure 7: Heat map of the approximation of expected error function (15) on domain (56) and
sampling distribution (57) for varying values of γ and b and a fixed value of ms

Our simulation study can be used to infer a more general case. Consider the covariance function

as φ(x,x′) = exp(−
∑p

i=1 γk(xk − x′k)) defined on Ωs as a p-dimensional hyper-rectangle with side

lengths b1, . . . , bp with a uniform sampling distribution, i.e., xk ∼ U(ak, ak + bk) ∀x ∈ Ωs. With

this setup, we can write

EΩs(φ
2(x,x′)) =

p∏
i=1

Exk,x′k(exp(−2γk(xk − x′k)), (60)

which is a monotonic function in each bi and γi by lemma 5. Therefore, our simulation results are

valid for this generalized case as well.

Finally, we present some intuition behind the theoretical results in Section 3. The reason

why the direction a, found by solving optimization problem (20), results in a better covariance

approximation in each subdomain can be visually perceived for a two-dimensional domain. Suppose

we can partition the domain of two-dimensional function f(x) = cos(0.05x1 + 0.1x2) by cutting

orthogonal to either of three directions [1, 0], [0.43, 0.9], or [0, 1], where direction [0.43, 0.9] is the

direction of the fastest covariance decay obtained by optimizing (20). Figure 8 shows the 3-D

presentations of three local functions created by cutting orthogonal to each direction. We observe

that the local functions created by cutting orthogonal to the desired direction have a less fluctuating
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behaviour compared to those of directions [1, 0] and [0, 1]. That the function has less fluctuation

allows a random point on the local functions of Figure 8b to have (on average) higher correlation

to its neighboring data points. Therefore, we can obtain a better approximation of local covariance

structures by using the same number of pseudo data points located in each subdomain.

(a) a = [1, 0]t (b) a = [0.43, 0.9]t (c) a = [0, 1]t

Figure 8: Local functions created by cutting orthogonal to directions [1, 0], [0.43, 0.9] (solution
of (19)), and [0, 1] on a synthetic dataset

Appendix E Solving optimization problem (20)

Let first write the partial derivatives of objective function in (20),

∂L(ā)

∂ak
= −yTn (Kā

n + σ2In)−1∂Kā
n

∂ak
(Kā

n + σ2In)−1yn + tr((Kā
n + σ2In)−1∂Kā

n

∂ak
), (61)

where ∂Kā
n

∂ak
is the matrix of element-wise derivatives with respect to the kth element of ā. Note that

each element of ∂Kā
n

∂ak
involves the term 1√

1−āT ā
. Therefore, the gradient of the objective function

in (20) does not exist on the boundary of the feasible region, i.e., ∇L(ā) → ∞ as āT ā → 1.

Therefore, to avoid an undefined gradient on the boundary, we modify the optimization by making

the feasible region slightly tighter, i.e.,

min
ā

L(ā) = yTn (Kā
n + σ2In)−1yn + log|Kā

n + σ2In|

subject to āT ā ≤ 1− ε,
(62)

where ε is a very small number. In our experiments, we set ε = 0.001.

Due to the simple convex structure of constraint āT ā ≤ 1 − ε, i.e., a d − 1-dimensional hyper-
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sphere, optimization (62) can be solved by the Projected Gradient Descent algorithm (Nesterov

and Nemirovskii, 1994). In this projection algorithm, the (j + 1)th decent step is defined by

āj+1 = P
(
āj − α

||∇L(āj)||
∇L(āj)

)
, (63)

where α
||∇L(āj)|| is a normalized length step, and

P(z) = argminw||w − z||

subject to wTw ≤ 1− ε.
(64)

P(z) = z when zT z ≤ 1 − ε, otherwise the solution to P(z) occurs at the point that the line

defined by z and the center of the hypersphere, (0), crosses the boundary of the hypersphere, i.e,

intersection of w1
z1

= w2
z2

= . . . =
wp−1

zp−1
and wTw = 1 − ε. Therefore, the solution to P(z) has the

closed form,

P(z) =


z zT z ≤ 1− ε

[ z1√
zT z

, . . . ,
zp−1√
zT z

]T zT z > 1− ε.
(65)

Appendix F Practical Considerations

F.1 Creating boundaries, control points, and boundary functions

The focus of this section is on the practical implementation of SPLK, and therefore, the charac-

terization of cutting hyperplanes differs from the discussion in Section 3.2. Here, instead of using

a vector of angles corresponding to primary axes of input space, we use a given direction, which

can be the solution to optimization (20) or any other arbitrary direction, to define the cutting

hyperplanes.

Recall that in our partitioning policy all the cutting hyperplanes are parallel to each other, and

therefore, orthogonal to a unique direction, which is characterized by a vector a = [a1, . . . , ap]
T .

Let Z = {xTi a | xi ∈ X} denote the projection of all the input vectors onto a. Next, consider the

ordered set {z1, . . . , zS−1}, where min Z < z1 and zS−1 < max Z, and z` < z`+1, for ` ∈ [S − 1].

Given the set {z1, . . . , zS−1} and direction a, which is in fact the normal vector of all of the
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cutting hyperplanes, we define the `th cutting hyperplane orthogonal to a as H`,a = {x ∈ Ω |

a1x1 + . . .+ apxp = z`} for ` ∈ [S − 1]. We use the data points close to H`,a to locate the control

points. To this end, we first define ∆` = {xi ∈ X| |xTi a − z`| < δ} as the set of training data

points whose Euclidean distance to H`,a is less than a predefined constant δ. Then, calculate the

maximum and minimum of the kth dimension of the data points in ∆`, respectively,

τ1,k,` = max
xi∈∆`

xTi ek and τ0,k,` = min
xi∈∆`

xTi ek, (66)

where ek is the unit vector along the kth primary axis of the space for k ∈ [p]. As such, the set

V` =
{

[τb,1,`, . . . , τb,p,`]
T |b = 0, 1

}
characterizes the vertices of the hyper-rectangle inscribing ∆`.

Next, we uniformly sample Q > 0 points from V` and denote the set of all these points as U`. We

obtain the set of control points on H`,a denoted as C` by projecting the points in U` on H`,a,

C` = {(z` − uTa)a + u | ∀u ∈ U`}. (67)

There are several ways to choose the width of each subdomain, i.e., z`+1 − z` for ` ∈ [S −

1]. One way is to choose a fixed width for the subdomains; however, this approach results in

subdomains with different numbers of local data points depending on their distribution on the

domain. Also adaptive mesh generation techniques (Becker and Rannacher, 2001) can be used to

vary the widths to balance the error among the subdomains. In Section 4, we use varying widths for

the subdomains to balance the numbers of local data points across the subdomains. This approach

helps us to control the computation time of the algorithm, because it is evenly distributed among

the subdomains.

Furthermore, to impose connectivity on the optimization procedure discussed in Section 3.1,

we need to specify the boundary values for each control point c ∈ C`. To this end, we fit a

boundary GPR over the hyper-rectangle defined by V` using the data points in ∆`. We then use

the predictive mean function of this GPR to determine the boundary values. Letting R`(.) denote

as the predictive mean function of the GPR constructed by ∆`, the boundary value for each c ∈ C`

is

R`(c) = kc∆`
(K∆`∆`

+ σ2
` I`)

−1y∆`
, (68)
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Dataset q Time MSE NLPD

3 145.50 12.18 2.61
TCO 4 145.61 12.15 2.61

5 146.06 11.98 2.60

3 134.48 25.50 2.60
Levitus 4 134.47 25.44 2.59

5 135.36 25.25 2.59

3 157.62 0.42 4.01
Dasilva 4 159.98 0.38 3.30

5 167.79 0.38 3.05

2.2 147.53 17.41 2.67
Protein 2.5 202.09 17.39 2.66

3 3651.33 17.38 2.65

Table 1: Effect of q on efficiency of SPLK. S = 30 and κ = 4 across all the datasets

where kc∆`
is the covariance vector between the control point c ∈ C` and the neighboring data

points in ∆`, and K∆`∆`
is the covariance matrix between the neighboring data points in ∆`

themselves. In Section 3.1, with a slight abuse of notation, we denote R(.) as a function that

takes a control point as an input and returns R`(.), depending on the location of the control point.

Note that since the set of neighboring data points ∆` is a small set, we use a full GPR to obtain

functions 68.

F.2 Control points density

As discussed in Section 3.4, we use a density parameter and the dimension of the boundary space,

i.e., q and p− 1, to determine the number of control points to be uniformly located on each bound-

ary. Notably, our experiments show that setting q to small values usually results in satisfactory

performance, while increasing it does not significantly affect the prediction accuracy, but increases

the computation burden, particularly in higher dimensional domains. The results of testing SPLK

on our four datasets with varying values of q and all other parameters fixed are reported in Table 1.

An increase in the value of q slightly improves the prediction accuracy in terms of NLPD and MSE.

Moreover, as the dimension of the domain of data increases, an increase in the value of q results in

much longer computation time.

F.3 Hyperparameter learning

Maximizing the marginal likelihood of the training data, p(y), is a popular method for learning

the hyperparameters of a model (Rasmussen and Williams, 2006). In SPLK, instead of one global
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marginal likelihood function, there are S local functions p(ys), each of which can be trained inde-

pendently. Recall that our local predictors are in fact SPGP predictors that consider pseudo-inputs

as parameters of the model. Therefore, we have two types of parameters: one is the location of local

pseudo-inputs and the other is the hyperparameters of the underlying covariance function. Maxi-

mizing the logarithm of the local SPGP marginal likelihood functions using gradient descent with

respect to local pseudo-inputs and hyperparameters provides local optimal locations. Specifically,

the logarithm of the marginal likelihood of SPLK’s sth local model is

log(p(ys)) = −1

2
log |Gs| −

1

2
yTs G−1

s ys −
ns
2

log 2π, (69)

where Gs is the same as that of Section 3.1.

Moreover, we use anti-isotropic squared exponential function as the choice of our local covariance

functions,

φ(x,x′) = C exp
(
− (x− x′)TΓ(x− x′)

)
, (70)

where Γ is a diagonal matrix with length-scale parameters γ1, . . . , γp on the diagonal. This covari-

nace function automatically determines the significance of predictors after training its parameters

by minimizing local likelihood function (69).

Appendix G A simulation study on the performance of SPLK

In this section, we conduct a simulation study to further investigate the performance of SPLK

comparing to the other competing algorithms in terms of MSE. As mentioned in Section 4.2, when

the rates of covariance decay highly vary in different directions (similar to the Dataset Dasilva),

SPLK can perform better than the competing algorithms considered in this study. This is because

SPLK partitions the domain of data orthogonal to the direction of the fastest rate of covariance

decay, which potentially reduces the degree of mismatch on the boundaries compared with the

other directions.

To test this claim we generate 10,000 samples from a Gaussian process with covariance func-

tion (17) and highly different length scale parameters γ1 = 50, γ2 = 10, and γ3 = 0.001. To this
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end, we first generate 10,000 vectors, xi, uniformly from the cube [0, 5]× [0, 5]× [0, 5] and form the

covariance matrix KXX. Then we draw 10,000 responses, yi, using KXX and add a noise to each

response from distribution N (0, 4). Finally, we use 9,000 of these samples for training and 1,000 fo

r testing.

For this simulated dataset, SPLK partitions the domain of data from the first direction which

has the largest associated length scale parameter. Figures 9a and 9b show the performance of all the

competing algorithms in terms of MSE and NLPD versus computation time. As expected, due to

the designed covariance structure, i.e., highly varying rates of covariance decay, SPLK outperforms

the other competing algorithms in terms of MSE, while performs as well as PWK and PIC in terms

of NLPD.
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(a) MSE vs. computation time
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(b) NLPD vs. computation time

Figure 9: MSE and NLPD versus computation time. For SPLK, q = 3 and k ∈ {2, 4, 6, 8}. The
value of parameter S is selected from the set {8, 16, 32, 64, 128, 256}.
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