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Abstract

We propose an algorithm for two-class classification problems when the training data are
imbalanced. This means the number of training instances in one of the classes is so low
that the conventional classification algorithms become ineffective in detecting the minority
class. We present a modification of the kernel Fisher discriminant analysis such that the
imbalanced nature of the problem is explicitly addressed in the new algorithm formulation.
The new algorithm exploits the properties of the existing minority points to learn the
effects of other minority data points, had they actually existed. The algorithm proceeds
iteratively by employing the learned properties and conditional sampling in such a way
that it generates sufficient artificial data points for the minority set, thus enhancing the
detection probability of the minority class. Implementing the proposed method on a number
of simulated and real data sets, we show that our proposed method performs competitively
compared to a set of alternative state-of-the-art imbalanced classification algorithms.

Keywords: kernel Fisher discriminant analysis, imbalanced data, two-class classification

1. Introduction

Classification is a task of supervised learning in which the response function assumes a set
of integer values known as the class labels. In particular, two-class classification refers to
algorithms producing binary responses and aiming at separating two probability densities
after observing some instances from each class. In this paper, we are interested in developing
a classification algorithm for a two-class classification problem in which the number of data
points in one class (i.e. the majority class) is greater than those of the other class (i.e. the
minority class). This type of data structure is called imbalanced data.

It is particularly crucial to correctly identify test cases belonging to the minority class
as a low detection rate for the minority class could incur heavy expenses in practice. The
reason lies in the nature of the minority classes. For example, in quality control applications,
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the minority class is the class of defective products; in security applications, the minority
class is the class of potential perpetrators or attackers; in medical applications, the minority
class is the class of diseases or cancerous cells. A classification method that fails to detect
the minority classes is useless for practical purposes.

If one is interested in detecting minority cases in application, a direct use of traditional
two-class classifications, such as support-vector machines or logistic regression, is not reliable
because when the minority class data are too few in the training set, those methods tend
to label almost all the instances in the test set, minority or otherwise, as the majority class
(Chen et al., 2005). A training data set overwhelmed with one class of data points and
deficient in the other class misleads the two classification algorithms about the accurate
boundary between the two groups. Using most standard loss functions, these classification
algorithms see little penalty by classifying regions in which both the minority and majority
points have high density.

The major efforts aimed at solving the imbalanced classification problem can be cate-
gorized into: (a) cost-sensitive methods and (b) sampling strategies (He and Garcia, 2009;
Japkowicz, 2000). Cost-sensitive methods take the imbalance structure into account by
assigning a higher cost to the miss-classification of minority data points (Elkan, 2001; Ting,
2002). Despite a theoretical connection between imbalanced structure and cost-sensitive
framework (Maloof, 2003; Weiss, 2004), this class of algorithms however may fail in prac-
tice; for example, if in the training stage the instances forming the classes are separable
(Wallace et al., 2011, p.757). More critically, determining a suitable cost function is not a
straightforward task and it may be difficult to achieve a robust algorithm using cost-sensitive
methods.

The basic idea of the sampling-based approach is to alter the imbalanced structure
of the problem by using different types of sampling methods. Hence, the algorithms in
this category can be classified according to the specific sampling approaches, including
resampling with replication, undersampling, or synthetic oversampling. In resampling with
replication, one can use, for instance, bootstrapping for oversampling the minority data
(Chen et al., 2005; Byon et al., 2010). In undersampling, one downsamples the majority
data points to create more balanced data sets and alleviate the imbalance attached to the
original data (Liu et al., 2009).

A novel approach proposed by Chawla et al. (2002) and called SMOTE, generates extra
synthetic minority data points by interpolating the spaces between existing minority data
points. Unlike other sampling methods which resample the existing data, SMOTE “creates”
new data points, debuting the synthetic oversampling approach. Since SMOTE, many other
variations of synthetic oversampling have been proposed in the literature; among others, Han
et al. (2005) proposed an algorithm generating minority data points close to the boundary
of the two classes and Batista et al. (2004) utilized different heuristics to integrate with
synthetic oversampling.

SMOTE has proven to be a powerful method for handling imbalanced classification
problems and still serves as a benchmark for this class of problems. An important revelation
from the success of SMOTE and the like is that the synthetic oversampling is more potent
than merely resampling existing data. The power of synthetic oversampling seems to lie
in the simple fact that extra data are synthesized. From another perspective, synthetic
data generation can be considered as a case of “phantom-transduction” as opposed to

2696



Absent Data Generating Classifier

the inductive inference (Akbani et al., 2004). In other words, generating extra synthetic
minority data points resembles that of using test sets in learning (Gammerman et al., 1998).
SMOTE, for instance, does not employ a sophisticated approach for data synthesizing, but
uses a simple, yet proved highly effective in practice, data interpolation (Chawla et al.,
2002). It is not clear, however, whether the mechanism of data synthesizing matters and if
so, which type of mechanism to use.

The current literature does not seem to present a consensus concerning the effectiveness
of data synthesizing mechanisms. We tend to believe that it matters, because if a data
synthesizing mechanism is tailored to and/or embedded in a specific classification problem,
we expect to observe improvements in classification performance. Some empirical evidence
supports our belief (Han et al., 2005). At a minimum, we believe that the data synthesizing
issue remains unsettled and is worth further investigation.

We also believe that an important question to ponder is how to decide the decision
boundary if we were furnished with more instances of the minority class. It should be
emphasized, however, that not all those could-be minority points carry the same amount of
information; those that can guide the algorithm to expand the minority class’s region are
more valuable because it is the difficulty that classification algorithms confront. Basically
the question becomes how to use the current data points to synthesize the “valuable” but
absent minority data points that allow us to obtain a tighter boundary for the majority
class.

Towards that goal, we employ the kernel trick embedded in Fisher discriminant analysis
(Hofmann et al., 2008; Mika et al., 1999) in our data synthesizing mechanism in order
to exploit the properties of newly generated points in the feature space without actually
specifying them. We utilize two properties of the “artificially” generated minorities: (i) the
points should be located as close as possible to the boundary of the majority class, (ii) their
projection onto a lower dimensional space should be close to that of the existing minority
points in their vicinity. Then we sample more minority points from the augmented data
set, conditional on the boundary achieved. We perform this procedure iteratively until the
algorithm achieves the desired performance, and label the resulting algorithm Absent Data
Generator (ADG).

The remainder of this paper is organized as follows. Section 2 outlines the kernel Fisher
discriminant analysis, formally defines the imbalanced classification problem and presents
the main optimization formulation. Section 3 presents the details of the proposed algorithm.
Section 4 describes the proposed method’s application to several simulated and real data
sets and the results when the data structure is imbalanced. Section 5 discusses finding a
bound on the generalization error of the algorithm. Section 6 concludes the paper and offers
suggestions for future research.

2. Problem Formulation

Let X denote the input space, and suppose X− = {x−1 ,x
−
2 , . . . ,x

−
l−
} ⊂ X is the training set

of majority data points which are independent and identically distributed (i.i.d.) (negative
points, labeled as −1 or simply “−”) and X+ = {x+

1 ,x
+
2 , . . . ,x

+
l+
} ⊂ X is the training set

of minority data points, also i.i.d. (positive points, labeled as +1, or simply “+” ). For
notation simplicity, the subscript “+” on l+ is dropped when the context is clear. In the
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case of imbalance data, we have l+ � l−, or simply l � l−. The goal in this section is
to introduce a basic framework and general thoughts on how to generate and then utilize
artificial data points. We propose generating artificial data points near the discriminative
boundary of the two classes, and that they are generated within existing clusters with the
probability of artificial data generated within a cluster inversely proportional to the size of
that cluster.

First, we introduce the notion of “absent data”: intuitively, absent data refer to the
data points belonging to the minority class whose lack of presence has made the problem
imbalanced, and we intend to re-generate them for the purpose of two-class classification.
The concept of some data being absent is based on the thought that the existing data points
may convey some information that allows us to identify some new data points belonging
to the same class. Of course, acknowledging the existing of absent data does not imply
that we know their numbers or exact locations in the space a priori. But in the context of
imbalanced classification, this assumption paves the way for solving the problem through
synthetic oversampling of minority data. Let Z = {x+

l+1,x
+
l+2, . . . ,x

+
l+k} ⊂ X

+ denote these
absent data from the minority class; we assume the absent data are also an i.i.d. sample.
We may denote each x+

l+j ∈ Z by zj for j = 1, 2, . . . , k.

We first review the Fisher discriminant analysis briefly. For a two-class classification,
Fisher linear discriminant can be expressed simply through the following optimization prob-
lem:

max
w

J(w) =
wTSBw

wTSWw
, (1)

where SB and SW are the between and within class scatter matrices, respectively:

SB = (m− −m+)(m− −m+)T ,

SW =
∑

i∈{−,+}

∑
x∈X i

(x−mi)(x−mi)
T , (2)

and mi = 1
li

∑li
j=1 x

i
j , for i ∈ {−,+}, is the sample average of each class. Problem (1)

can be interpreted as maximizing the ratio of the between-class variance to the pooled
variance about the means. Under certain conditions, we can also interpret this formulation
as an optimal Bayes classifier (Bickel and Levina, 2004). We will revisit this formulation in
Section 5 when developing an error bound.

To deal with nonlinear cases, one can map the data into a high-dimensional feature space
and perform the calculation in that space. However, if an appropriate kernel is chosen for
the transformation of the data and the calculation only requires kernel evaluations, we do
not have to perform any calculations in the high-dimensional feature space (Hofmann et al.,
2008). This property, known as the kernel trick, can be applied to the Fisher discriminant
analysis, resulting in the Kernel Fisher Discriminant (KFD) (Mika et al., 1999). Specifically,
the KFD is the extension of the Fisher linear discriminant performed in the feature space
which solves

max
w

J(w) =
wTSφBw

wTSφWw
, (3)
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where SφB and SφW are the between and within class scatter matrices, respectively, in the
feature space:

SφB = (mφ
− −m

φ
+)(mφ

− −m
φ
+)T ,

SφW =
∑

i∈{−,+}

∑
x∈X i

(φ(x)−mφ
i )(φ(x)−mφ

i )T , (4)

and mφ
i = 1

li

∑li
j=1φ(xij). Here, φ is a nonlinear mapping from X to the feature space F ,

which is assumed to be a separable Hilbert space endowed with an inner product 〈·, ·〉 such
that there exists a function K : X ×X → R where K(x,x′) = 〈φ(x),φ(x′)〉. Obviously, in
this case w ∈ F . Applying to imbalanced data sets, KFD suffers the same problem as most
other classifiers do, i.e. it falls short of detecting most minority points in the test stage.

Our goal is to consider the imbalanced structure explicitly and extend KFD in such a
way that it could be applied to imbalanced data. Towards this end, our thought process is
as follows: first, if we had extra data points from the minority class, those points would be
projected with high probability to where the existing minority points are projected; second,
points close to the boundary of the majority points carry more “information” so we can use
them to find the separating hyperplane in the feature space. The latter is in fact an intuitive
property we are seeking, but the former requires more clarification. Particularly, if dealing
with complex patterns in high dimensions, we may frequently observe that the minority data
points constitute separate clusters after (or before) being projected to a lower-dimensional
space. Therefore, if resemblance in projection regions is used as a property to generate
artificial data, it entails precaution against the effect of complex structures. One way to
address this issue is to take the cluster-based structure of the data into account explicitly.

Suppose the training minority points constitute C different clusters, for C ≥ 1. That
is, we have X+ =

⋃C
c=1X+

c and X+
c′ ∩ X

+
c = ∅ for c 6= c′, where X+

c = {x+
1,c,x

+
2,c, · · · ,x

+
lc,c
}

is the c-th cluster of the minority data points, and we have |X+
c | = lc, and

∑C
c=1 lc = l.

Accordingly, we partition the absent data in Z also into C different clusters, Zc’s, for
c = 1, 2, . . . , C, each of which corresponds to one of the C clusters of the minority points.
Specifically Zc = {x+

lc+1,c,x
+
lc+2,c, . . . ,x

+
lc+kc,c

},
⋃C
c=1Zc = Z, and Zc′ ∩ Zc = ∅, for c 6= c′.

We also have |Zc| = kc, and
∑C

c=1 kc = k. The previously defined notation zj can be
similarly extended as zj,c := x+

lc+j,c
, for j = 1, 2, · · · , kc.

To enforce the property that newly generated points would be projected with high
probability to where the existing minority points are projected, we add the constraint(

wTφ(zj,c)−wTmφ
+,c

)2
≤ δ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (5)

for some positive δ > 0, where mφ
+,c = 1

lc

∑lc
j=1φ(x+

j,c), namely the mean of cluster c in the
feature space. To have the second property, i.e. to have more points close to the boundary
of the majority points, we add another constraint,

(φ(zj,c)−mφ
−)T (φ(zj,c)−mφ

−) ≤ Λ for j = 1, 2, . . . kc, c = 1, 2, . . . C, (6)

for some positive Λ > 0. Constraint (5) ensures that the point φ(zj,c) is at most δ distance
away from the current cluster center of a minority group. This constraint also incorporates
the cases where the minority data are cohesive and do not constitute many clusters, i.e.
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only one cluster is determined according to the algorithm discussed in Section 3, which
means that the constraint implies that the newly generated data point is at most δ distance
away from the mean of the minority data points. Constraint (6) ensures that the newly
generated points are “useful” in the sense that they are located close to the boundary of
the two groups.

As a result of the Representer’s Theorem (Hofmann et al., 2008), we can safely assume
both w and φ(zj,c) belong to the space generated by the training points, namely X−∪X+,
whose elements, with a slight abuse of notation, can be represented by {xp}np=1 where
n = l− + l. Specifically,

w =
n∑
p=1

αpφ(xp), (7)

and

φ(zj,c)−mφ
− =

n∑
p=1

βj,cp φ(xp), for j = 1, 2, . . . kc, c = 1, 2, . . . C, (8)

where αp and βj,cp are real coefficients for p = 1, 2, . . . , n, j = 1, 2, . . . , kc and c = 1, 2, . . . C.
Having made these assumptions, we can express constraints (5) and (6) as n∑

p=1

αpφ(xp)
T

 n∑
p=1

βj,cp φ(xp) +
1

l−

l−∑
`=1

φ(x−` )− 1

lc

lc∑
`=1

φ(x+
` )

2

≤ δ, (9)

and
n∑
p=1

(βj,cp )2K(xp,xp) ≤ Λ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (10)

respectively. In the matrix forms, the above two expressions can be represented as[
αTKβj,c +αT (M− −M c

+)
]2 ≤ δ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (11)

and
(βj,c)TK(βj,c) ≤ Λ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (12)

where α = [α1, α2, . . . , αn]T and βj,c = [βj,c1 , βj,c2 , . . . βj,cn ]T , and M− is an n × 1 vector

such that (M−)j = 1
l−

∑l−
`=1K(xj ,x

−
` ), and M c

+ is an n × 1 vector such that (M c
+)j =

1
lc

∑lc
`=1K(xj ,x

+
`,c). The n× n matrix K consists of all of the pairwise kernel evaluations,

namely (K)r,s = K(xr,xs), for r, s ∈ {1, 2, . . . , n}.
Following the notation introduced in Mika et al. (1999),

M := (M− −M+)(M− −M+)T , and (13)

N :=
∑

i∈{−,+}

Ki(I − 1li)K
T
i , (14)

where M+ is an n× 1 vector such that (M+)j = 1
l

∑l
`=1K(xj ,x

+
` ), Ki is an n× li matrix

with (Ki)r,s = K(xr,x
i
s) for r ∈ {1, 2, . . . , n}, s ∈ {1, 2, . . . , li} for i ∈ {−,+}, I is the
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identity matrix of appropriate size, and 1li is a matrix of appropriate size whose entries are
1
li

for i = − and i = +, respectively. Now, we can formulate the classification problem with
imbalanced data through the following optimization

max
α

J(α) =
αTMα

αTNα
, (15)

subject to[
αTKβj,c +αT (M− −M c

+)
]2 ≤ δ, for j = 1, 2, . . . kc, c = 1, 2, . . . C, (16)

(βj,c)TK(βj,c) ≤ Λ, for j = 1, 2, . . . kc, c = 1, 2, . . . C. (17)

To solve optimization problem (15)-(17), we assume δ = 0. This implies that the newly
generated points zj,c should be projected where the mean of the corresponding cluster in
the minority group is projected. As such, constraint (16) is replaced by

αTKβj,c +αT (M− −M+) = 0, for j = 1, 2, . . . kc, c = 1, 2, . . . C.

This new constraint is not restricting, since we next solve a relaxation of the original prob-
lem. Specifically, we use the Lagrangian relaxation (Anstreicher and Wolkowicz, 1998) for
solving ((15))-(17). First, note that an equivalent way of writing the optimization ((15))-
(17) is to consider the denominator in the objective function (15) as another constraint and
only have the numerator in the objective function. Specifically, we consider the objective
function to be

max
α

J(α) = αTMα, (18)

and add the constraint

αTNα ≤ R, (19)

to the optimization problem (15), for some positive number R. Having done that, we get
the following for the Lagrangian function

J(α,β) = αTMα − γ
[
αTNα−R

]
−

C∑
c=1

kc∑
j=1

λcj
[
αTKβj,c +αT (M− −M c

+)
]

−
C∑
c=1

kc∑
j=1

µcj
[
(βj,c)TK(βj,c)− Λ

]
, (20)

for γ, λcj , µ
c
j > 0.

To find the stationary points, we set the partial derivatives of the Lagrangian to zero,

∂

∂α
J = 2 (M − γN)α−

C∑
c=1

kc∑
j=1

λcj
(
Kβj,c + (M− −M c

+)
)

= 0, (21)
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∂

∂βj,c
J = −λcj (Kα)− 2µcjKβ

j,c = 0, for j = 1, 2, . . . kc, c = 1, 2, . . . C. (22)

Substituting βj,c = − λcj
2µcj
α, which results from (22), into (21) yields

2 (M − γN)α = −
C∑
c=1

kc∑
j=1

λcj

(
K

λcj
2µcj

α+ (M− −M c
+)

)
, (23)

which can be further simplified as

(M − γN)α = −Kα
C∑
c=1

kc∑
j=1

(λcj)
2

4µcj
−

C∑
c=1

(M− −M c
+)

kc∑
j=1

λcj
2

 . (24)

Let ω = −
∑C

c=1

∑kc
j=1

(λcj)
2

4µcj
, and νc = −

∑kc
j=1

λcj
2 . Then, we have

(M − γN)α = Kαω +

C∑
c=1

{
(M− −M c

+)νc
}
. (25)

Therefore, α is the solution of the linear system

((M − γN)− ωK)α =

C∑
c=1

{
(M− −M c

+)νc
}
. (26)

Solving the problem yields the optimal projection coefficients α∗ = [α∗1, α
∗
2, . . . , α

∗
n]. Subse-

quently, we find the projection of a new test point xtest ⊂ X onto w by

< w,φ(xtest) >=

l∑
`=1

α∗`K(x`,xtest). (27)

The solution of the linear system of equations, namely (26), provides us with the co-
efficients α∗ which will be used for finding a tighter boundary for the majority class. We
note that despite not being present in (26), βj,c’s affect the values of α through the values
of the Lagrangian coefficients, λcj and µcj . As such, βj,c’s are used implicitly to identify the
locations of absent points, although not explicitly needed for prediction; this is how the use
of absent points helps find a tighter boundary for the majority class.

3. Algorithm

As mentioned in Section 2, in optimization problem (15)-(17) we find the projection coef-
ficients α∗ based upon two considerations specifically developed to address the imbalanced
structure. The outcome is a decision boundary separating the two classes. Yet, those absent
data points are still implicitly considered and have not been used to update the estimate
of scatter matrices. This section explains how to generate the synthetic data points, based
on the newly decided class boundary, and use them to update the scatter matrices.
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From a different angle, optimization problem (15)-(17) can be seen as a way to expand
the region associated with the minority data points, as opposed to the region one would
have had without imposing constraints (16) and (17). This expansion allows us to identify
the minority region with better precision and to estimate SB and SW more accurately.
Once the minority class region is revised, we can use the knowledge to synthesize more data
points for the minority class.

We start by using an iterative procedure that alternately updates the class boundary
and revises the SB and SW estimation. In other words, optimization problem (15)-(17)
splits the input region X into two disjoint regions X− and X+ which are estimated regions
belonging to the majority and minority points, respectively. Then, we draw additional
minority points, i.e. data synthesizing for the minority class, from the updated minority
region to improve the estimates of the scatter matrices.

Specifically, we draw independent samples from the estimated density of the current
minority points, conditional on the boundary imposed by the optimal projection coefficients
α∗. Let F̂ uα∗ be the estimated distribution of the minority points as a mixture of u Gaussian
distribution estimated using X+ = {x+

1 ,x
+
2 , . . . ,x

+
l } ⊂ X and truncated according to α∗,

namely

F̂ uα∗ =
1

u

u∑
b=1

abΨb, (28)

where Ψb is a Gaussian distribution with mean µb and variance Σ2
b , truncated over the

region X+, 0 ≤ ab ≤ 1 for b = 1, 2, . . . , u, and
∑u

b=1 ab = 1. Let Z̃ denote a set of q

independent samples drawn from F̂ uα∗ , specifically x̃+
` ∼ F̂ uα∗ , for ` = 1, 2, . . . , q. Denote

the augmented minority set by X̃+ = X+
⋃
Z̃ = {x+

1 ,x
+
2 , . . . ,x

+
l , x̃

+
1 , x̃

+
2 , . . . , x̃

+
q }. Note

the difference between x̃+
` used here and z` used in the previous section: z` denotes the

absent data points close to the class boundary, playing a role similar to the support vector
points, while x̃+

` denotes any data point actually generated for the minority class. The
x̃+
` points cannot be guaranteed to be close to the class boundary; rather they may be

over the interior of the minority region or cross the boundary and over the region of the
majority class (called intrusion). Consequently, there is a difference between k and q: k
is the number of data points represented by z`, similar to the number of support vector
points, while q is the number of actually generated data points scattering around in the
input space. Generally, q is larger than k.

Then we use the augmented minority set to reevaluate the between- and within-class
scatter matrices, such as:

S̃
φ

B =
(
mφ
− − m̃

φ
+

)(
mφ
− − m̃

φ
+

)T
,

S̃
φ

W =
∑
x∈X−

(φ(x)−mφ
−)(φ(x)−mφ

−)T +
∑
x∈X̃+

(
φ(x)− m̃φ

+

)(
φ(x)− m̃φ

+

)T
, (29)

where m̃φ
+ = 1

l+q

∑l+q
j=1φ(x+

j ). In other words, we update the estimates of the scatter
matrices using the newly generated points. Using (7) and (8) and following the steps for
the optimization procedure stated in Section 2, we obtain a new optimization problem
similar to (15)-(17) in which the matrices K, N , and M and vectors M− and M c

+, for
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c = 1, 2, . . . , C, are evaluated using the sets X− and X̃+. The new optimization problem
yields a new optimal projection coefficient vector α∗ which, in turn, we use to re-estimate
the scatter matrices by fitting again a mixture of Gaussian distributions and generating
q ← b q2c absent points (i.e. half of the points we generated in the previous iteration). We
continue this procedure until q < 1, and we use the final α∗ as the optimal projection
coefficient vector.

The clusters at each stage are decided based on the X-means algorithm (Pelleg and
Moore, 2000). X-means is simply a k-means clustering algorithm in which the number of
clusters, which is denoted by C in our algorithm, is decided based on a Bayesian Information
Criterion (BIC) (Hastie et al., 2009). We choose X-means because the number of clusters is
not known in advance; this number is estimated by X-means based on data; other clustering
methods can also be used (Fraley and Raftery, 1998).

The number of Gaussian mixtures to estimate the distribution of the minority points is
also decided based on BIC. Specifically, the number of Gaussian mixtures at each iteration
is

arg min
u∈N

BIC
(
F̂ uα∗

)
, (30)

where N is the set of positive integers and

BIC
(
F̂ uα∗

)
= −2 log(L) + u log(q),

where L is the likelihood of the minority data points, assuming they are random samples
from F̂ uα∗ .

Once we find the number of Gaussian mixtures, we generate q data points such that
those points are sampled from the fitted Gaussian mixture, assuming the current boundary
defined by the classifier. Among the q synthetic data points at each stage, we first admit
q′ ≤ q of them based on (27); this step is to discard the synthetic data points that are on

the wrong side of the decision boundary. We denote the set of the admitted points by Z̃ ′,
which is the final set of the newly generated data points at a given stage.

The data points in Z̃ ′ are then assigned to a cluster c = 1, 2, . . . , C according to their
Euclidean distance to the center of the cluster in the original space. Specifically, for x̃+

` ∈ Z̃ ′,
its cluster membership is assigned as

c = arg minc′∈{1,...,C}‖x̃
+
` − x̄

+
c′‖, (31)

where x̄+
c′ = 1

lc′

∑lc′
`=1 x

+
`,c′ , which is the center of cluster c′ in the original space. This gives

us qc new data points for each cluster c = 1, 2, . . . , C, such that
∑C

c=1 qc = q′.

The values of Lagrangian coefficients λjc and µjc are determined to be inversely propor-
tional to the number of current minority data points in their associated clusters, namely
λjc = λ

lc
and µjc = µ

lc
. This means that if there are very few data points in a cluster, violating

constraints (16) and (17) is more heavily penalized in comparison to the case when there
are more data points in that cluster. The number of perceived absent data points in a
cluster kc is also inversely proportional to the current number of data points in that cluster,
because a cluster formed by very few data points is not reliable enough to generate many
new data points. Note that kc is the a priori number of perceived absent data points in a
cluster, while qc is the actually generated data points belonging to cluster c.
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Assuming we know the values of the tuning parameters γ and λ, we can summarize
the steps of the Absent Data Generator classifier (ADG) in Algorithm 1. In practice,
the aforementioned tuning parameters are determined using cross validation (Hastie et al.,
2009). Based on our experiments, ADG is not very sensitive to the number of absent points
k, so that it can be simply set to a number between 10 to 15. The number of actual minority
data points generated, q, on the other hand, is decided so that the final data set of interest
is relatively balanced. Note that the number of newly generated points q is decreasing at
each stage.

Algorithm 1 Absent Data Generator for Imbalanced Classification

Given X− and X+, evaluate K, M , N , Ki, and M i, for i ∈ {−,+} and let X̃+ = X+.
repeat

1. Find C clusters for the augmented minority set X̃+, where C is decided by mini-
mizing the associated BIC.
2. Choose λjc = λ

lc
, µjc = µ

lc
, for j = 1, 2, . . . kc, and kc is chosen proportionally to 1

lc
,

for c = 1, 2, . . . C, such that
∑C

c=1 kc = k.

3. Let ω = −
∑C

c=1

∑kc
j=1

(λcj)
2

4µcj
, νc = −

∑kc
j=1

λcj
2 and (M c

+)j = 1
lc

∑lc
`=1K(xj ,x

+
`,c)

4. Let α∗ be the solution of ((M − γN)− ωK)α =
∑C

c=1

{
(M− −M c

+)νc
}

.
5. Fit a mixture of u normal distributions to X+ where u provides the smallest BIC
in (30).
6. Generate q data points from the resulting Gaussian mixtures above, say Z̃ =
{x̃+

1 , x̃
+
2 , . . . , x̃

+
q }.

7. Utilize α∗ according to (27) to test if each x̃+
` , ` = 1, 2, . . . , q belongs to class +1 or

not. Let Z̃ ′ = {x+l+1,x
+
l+2, . . . ,x

+
l+q′} ⊂ Z̃ be the set of data points admitted into the

minority set.
8. Identify the clusters to which the new data points belong according to (31). Let qc
be the number of elements in Z̃ ′ belonging to cluster c, for c = 1, 2, . . . C.
9. X̃+ ← X̃+ ∪ Z̃ ′.
10. X̃ ← X− ∪ X̃+.
11. (M−)j ← 1

l−

∑l−
`=1K(xj ,x

−
` ) for xj ∈ X̃ .

12. (M+)j ← 1
l+q′

∑l+q′

`=1 K(xj ,x
+
` ) for xj ∈ X̃ .

13. (M c
+)j = 1

lc+qc

∑lc+qc
`=1 K(xj ,x

+
`,c) for xj ∈ X̃ .

14. (K)r,s ← K(xr,xs), for r, s ∈ {1, 2, . . . , n+ q′},
(K−)r,s = K(xr,x

−
s ) for r ∈ {1, 2, . . . , n+ q}, s ∈ {1, 2, . . . , l−},

(K+)r,s = K(xr,x
+
s ) for r ∈ {1, 2, . . . , n+ q}, s ∈ {1, 2, . . . , l + q}.

15. M ← (M− −M+)(M− −M+).
16. N ←

∑
i∈{−,+}Ki(I − 1li)K

T
i .

17. q ← b q2c,
l← |X̃+|,
n← |X̃ |.

until q < 1.

2705



Pourhabib, Mallick and Ding

Having the optimal projection coefficients α∗ which corresponds to the optimal pro-
jection vector w in the feature space, we can obtain the prediction for the class labels by
classifying the projected values of the data points onto w. Let κx be an n× 1 vector of the
kernel evaluation between x ∈ X and all the training samples and the synthetic minority
points generated by Algorithm 1, that is,

(κx)` = K(x`,x), ∀x` ∈ X̃ . (32)

Then assume CT is a one-dimensional binary classifier, e.g. the Support Vector Machine,
trained on the set T = {(h(x`;α∗), y`) : x` ∈ X̃ , ` = 1, 2, . . . , n}, where y` is the class
label for x`, and h(x`;α∗) = αT∗ κx`

. More precisely, the classifier CT , after training on T ,
yields a real number as the threshold v∗ such that if h(x;α∗) > v∗, then the corresponding
h(x;α∗) is labeled as +1; otherwise −1. Then, the label prediction for a test point xt using
the ADG will be

ADG(xt) =

{
+1 if h(xt;α∗) > v∗,
−1 if h(xt;α∗) ≤ v∗.

(33)

We note that the ADG’s data generation mechanism is based on an iterative method
that explores the minority region by data generating constraints that are embedded in the
optimization problem. Unlike SMOTE, in ADG, the synthetic data are not necessarily in
the convex hull of existing data which could be another advantage for ADG, especially in
higher dimensions. Also, ADG acknowledges the significance of the data points close to the
boundary and generates synthetic data by utilizing both majority and minority data points.

ADG’s computational complexity is of polynomial order. Note that the major operation
in the algorithm is solving the system of linear equations (26), i.e. step 4 in the algorithm,
since all the other steps involve relatively low computational costs. Particularly, clustering,
if solved exactly, has cost O(ndC+1 log n), where d denotes the dimension here (Inaba et al.,
1994); however, we appeal to heuristics to accelerate the process even close to a linear
order of complexity in n under mild conditions (Kanungo et al., 2002). Other approaches
to implement the X-means algorithm faster are discussed by Pelleg and Moore (2000).
Fitting a mixture of u normal distributions requires only O(nu2) flops (Verbeek et al., 2003).
Using the kernel trick does not impact the complexity of the algorithm, and moreover, the
number of iterations is O(log n). Hence, from a computational complexity perspective,
the algorithm is dominated by (26) which can be solved using an LU decomposition in
2
3n

3 + O(n2) operations (Trefethen and Bau III, 1997). As such, the complexity of the
algorithm is O(n3 log n).

4. Experiments

In this section, we apply the proposed ADG algorithm to a number of data sets, both real
and artificial, and compare it to five alternative methods. Three of the methods in compar-
ison are the Cost-Sensitive Support Vector Machine (CS-SVM), Synthetic Minority Over-
Sampling Technique (SMOTE) (Chawla et al., 2002) and Borderline-SMOTE (BSMOTE)
(Han et al., 2005). CS-SVM is an SVM algorithm (Hastie et al., 2009) modified for the
imbalanced classification by imposing a higher cost on minority miss-classification (Elkan,
2001). In CS-SVM, we choose the value of the so-called “box constraint” in SVM to be
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l+l−
2l for positive samples and l+l−

2l−
for negative samples, so that the cost ratio for the two-

class misclassification is l
l−

. BSMOTE is similar to SMOTE but generates the new data
points close to the boundary between the minority and majority classes. In this regard,
BSMOTE uses a data synthesizing mechanism closest to that used in the proposed ADG.
For both SMOTE and BSMOTE, once the new data points are generated, we can use a
KFD algorithm to perform the task of classification on the balanced data set. Thereby, it
would be straightforward to compare their performance against the ADG, as ADG also has
the KFD as its classifier. The main parameter in SMOTE and B-SMOTE is the amount of
oversampling, which is set to the same level as that in ADG, which, in turn, is determined
by the value of q as discussed in Section 3.

The aforementioned competing algorithms are selected to compare different data gener-
ating mechanisms (SMOTE and BSMOTE) with that of the ADG, and to observe how they
perform compared to another school of thought in imbalanced classification, cost-sensitive
classification (CSSVM). We therefore present comparison among these algorithms in more
detail. As a general principle, we select the parameters in the competing methods based
on the recommendations made by the authors of the associated papers, unless otherwise
indicated.

To further investigate ADG’s viability as a means for imbalanced classification, at the
end of this section we also compare the results of ADG with a combination of ensemble
learners and undersampling (Wallace et al., 2011), and generating data using a fitted prob-
abilistic distribution for the minority data points (Hempstalk et al., 2008; Liu et al., 2007).
The former, referred to as “Under+ENS” hereafter, undersamples the majority data points
several times to obtain balanced data sets and then uses a set of ensemble classifiers on
the balanced data sets. The latter, referred to as “Prob-Fit” hereafter, fits a probability
distribution to the existing minority data points and then generates synthetic data points
from that distribution to create balanced data sets which, in turn, are used for classification.
The probability distribution used in Prob-Fit, for all the data sets used in this paper, is a
mixture of Gaussian distributions.

Concerning the kernel function used in both ADG and SVM (recall SVM is used in
CS-SVM, SMOTE and BSMOTE), we use a Radial Basis Function kernel K(x,y) =
exp(−d‖x − y‖2), in which the parameter d is estimated through cross validation. To
implement KFD we use the MATLAB package Statistical Pattern Recognition Tool

(STPRtool) (Franc, 2011). We code ADG, SMOTE, BSMOTE, Under+ENS, and Prob-Fit
in MATLAB, and also use the SVM implementation in MATLAB.

The performance measures we are interested in are the false alarm rate and detection
power. Specifically, for the test set {(x`, y`)|` = 1, 2, . . . , N}, we can estimate the false
alarm rate and detection power as follows

F̂A =
1

N−

N−∑
`=1

L(0,1)(y`, ŷ`), for ` such that y` = −1, (34)

and

D̂P = 1− 1

N+

N+∑
`=1

L(0,1)(y`, ŷ`), for ` such that y` = +1, (35)
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where N− and N+ are the number of majority and minority points in the test set, respec-
tively. The variable ŷi is the predicted class label (i.e. −1 or 1) for the associated prediction
method, and L(0,1)(., .) is the 0-1 loss function

L(0,1)(y1, y2) =

{
0 if y1 = y2,
1 if y1 6= y2.

(36)

Concerning the numerical experiments, we need to utilize simulated/real data sets which
are deemed imbalanced. However, the number of available imbalanced data sets is limited,
and we are also interested in testing algorithms on data sets with varying degrees of imbal-
ance ratio, which can be characterized by the proportion of the majority data points to the
minority data points in each data set. To this end, having the original training sets, X+

and X−, we can build training sets that are comprised of a subset of X+ and X− and have
a different proportion of majority to minority compared to the original training sets. That

is, we have X+
u ⊂ X+ and X−u ⊂ X− where X

+
u

X−u
> X+

X− . Then we can utilize X+
u and X−u as

the new training set and the remaining data for testing. We will explain this approach in
Section 4.2.

4.1 Using a Simulated Data set

Before presenting the classification results using the real data sets, we want to observe
the difference of the mechanism of data generation between ADG and SMOTE. For this
purpose, we create one simulated data set, in which we generate 900 data points as the
majority data set from a mixture of five Gaussian distributions on R2 and 450 data points
as the minority data set from a mixture of another five Gaussian distributions on R2.

Figure 1 shows a sample of synthetic data generation for a subset of the mixture of
Gaussian distributions with an imbalance ratio greater than 6. Comparing region A in plots
(b) and (c) in Figure 1 suggests that, for this particular data set, the ADG mechanism
is more “space-filling” than that of SMOTE. Comparing region B in plots (b) and (d)
shows that the intrusion into the majority space, while attempting to be space-filling, is
less of a problem for ADG than that for BSMOTE, which also aims at generating data
close to the boundary. Performing this space-filling property within the minority region,
is of paramount importance for imbalanced classification in higher dimensions as well. It
is not easy to demonstrate this property for the other data sets, as their dimensions are
larger than two. The subsequent numerical results, however, support ADG’s potency in
imbalanced classification, and we think its strength can be partly attributed to ADG’s
ability to maintain the property better than SMOTE and BSMOTE.

4.2 Real Data sets

We use a total of eleven real data sets for training and testing. Four of them are from the
UCI Machine Learning Repository (http://archive.ics.uci.edu/ml/), which are the
Wisconsin Diagnostic Breast Cancer data set, the Ionosphere data set, the Yeast data set
and Speech Recognition data set. The other seven are used in (Wallace and Dahabreh, 2012)
(http://www.cebm.brown.edu/static/imbalanced-datasets.zip). Table 1 summarizes
the basic properties associated with these data sets, including the Gaussian mixture data
simulated in Section 4.1.
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Figure 1: Comparing the mechanism of data generation in ADG with SMOTE for an artifi-
cial data set: (a) Original imbalanced data; (b) Balanced data after one iteration
of ADG; (c) Balanced data after using SMOTE; (d) Balanced data after using
BSMOTE. Comparing region A in plots (b) and (c) and region B in plots (c) and
(d) shows ADG is more space-filling and intrudes less into the majority space.

Among the aforementioned data sets, not all of them are genuinely imbalanced. In
those circumstances, we form the training data sets using a large portion of the majority
data and a very small portion of the minority data. Besides, we are interested in observing
how different methods perform as a data set becomes more imbalanced. For this purpose,
we adjust the degrees of imbalance in a training set, by tuning the ratio of the number of
majority points over the number of minority points in the data set. Specifically, for a given
imbalance ratio, we first randomly undersample both the majority and the minority data
points so that the training data set is constructed with the specified degree of imbalance.
This means we obtain new training sets X+

u and X−u as explained in the beginning of this
section, run each algorithm on the training set, and use the remaining data for testing. We
repeat this procedure ten times and report the average values as the estimated false alarm
rate and detection power. Note that these new X+

u and X−u will have the role of X+ and
X− in Algorithm 1 and no further modification is applied to the algorithm.
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Data set Dimension Total Data Amount # of Majority # of Minority

Simulated Gaussian mixtures 2 1350 900 450

Breast Cancer Detection 9 699 458 241

Speech Recognition 10 990 900 90

Yeast 10 1484 1449 35

Ionosphere 34 351 225 126

Pima 8 768 500 268

Car 21 1728 1659 69

Ecoli 9 336 301 35

Glass 9 214 197 17

Haberman 3 306 225 81

Vehicle 18 846 634 212

CMC 24 1473 1140 333

Table 1: Basic properties of data sets

4.3 Results

We represent the performance of each algorithm on each data set using the Area Under
Curve (AUC) of the Receiver Operating Characteristic (ROC) plot (Bradley, 1997). In the
ROC analysis we plot each (FA, DP) point for a test case in an ROC space in which the FA
is on the x-axis and the DP is on the y-axis (Provost et al., 1997). We use the perfcurve

command in MATLAB to generate the ROC curves, once we have computed a sufficient
number of (FA, DP) points. Then, we compute AUC as the area under a respective ROC
curve. Note that a larger AUC generally denotes better performance.

We apply the six competing methods (ADG included) to the twelve data sets (including
the simulated Gaussian mixture data) under different imbalance ratios. We report the
average AUC and its standard deviation (both from ten repetitions), instead of the ROC
plots themselves. Considering the number of classification methods in comparison, data
sets involved, and imbalance ratios used, it is impractical to hope that plotting all ROC
curves can produce a clear overall picture. Instead, we present the AUC information in a
concise form: Table 2 lists the average values and Table 3 lists the corresponding standard
deviations.

As evident in Table 2, ADG provides the largest AUC for most cases, especially under
the most imbalanced circumstances of each test instance. Rather than expecting the ROC
to suggest the optimal classifier, one may identify the regions or scenarios where a classifier
can be recommended (Provost et al., 1997). We find that ADG provides a good balance
between the conflicting objectives of reducing the false alarm, while increasing the detection
power.

As expected, Prob-Fit performs very well on the simulated data, because the data
are simulated using Gaussian mixture models. On the real data sets, the performance of
Prob-Fit depends on the actual number of minority data points, that is, it performs better
when the minority data are enough to reliably fit a distribution, and it performs poorly
when the data set suffers from absolute scarcity. Therefore, simply fitting a distribution to
generate data is of little use (Liu et al., 2007). The mechanism behind the performance of
Under+ENS seems to be more involved, and it appears to be competitive for a few cases
only. The comparisons demonstrate the importance of the structure of specific data sets,
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and that no one classifier is dominant for all types of data under all imbalance ratios. The
relation between a data structure and the mechanism embedded in the classifiers to handle
the imbalanced data is of interest to be understood, but currently there are not enough
insights garnered and we leave that issue to future efforts.

The fact that there are no dominating classifiers leads us to ask whether ADG’s perfor-
mance is statistically significant compared to the other methods. Considering that we are
in presence of several classifiers and several data sets, we need to use a test which ranks
classifiers based on their performance, followed by a post hoc analysis. One classical method
which we utilize is the Friedman test (Dems̆ar, 2006), a non-parametric method which sorts
the algorithms conducted on several data sets. Let ma be the number of algorithms, i.e.
classifiers, and md be the number of data sets. Let Re be an md×ma matrix of the results
listed in Table 2, in which each row represents a data set and each column is a classifier.
Considering the average results for each imbalance ratio as produced by one “data set”, we
have md = 48 and ma = 6. First, define the matrix Ra whose entries in each row represent
the classifier’s rank for that specific data set. Under the null hypothesis that all classifiers
are equivalent, i.e. their performance on each data set is identical, the Friedman statistic

F =
12md

ma(ma + 1)

(
ma∑
`=1

Ra
2
` −

ma(ma + 1)2

4

)
, (37)

has a Chi-squared distribution with ma − 1 degrees of freedom, where Ra` is the average
value of column ` = 1, 2, . . . ,ma. Table 4 lists the means for the estimated ranks associated
with each method. Figure 2, which presents the post hoc analysis on the ranking data using
multiple comparisons, shows the ADG’s ranking is significantly higher than other competing
algorithms under the 0.05 level of significance.

Before concluding this section, we want to briefly discuss the drawbacks of the cost-
sensitive approach (Maloof, 2003) and one-class classification (also known as novelty detec-
tion) (Park et al., 2010). One major obstacle faced with cost-sensitive methods is how to
choose a suitable cost ratio that leads to robust outcomes. Figure 3 shows the detection
power and false alarm as a function of cost ratio for the Haberman data where an imbal-
ance ratio greater than 3 is used in training. Specifically, the cost ratio denotes the value
associated with the box constraint in the SVM for minority data points divided into that
value for the majority data points. As Figure 3 shows, the detection power remains almost
constant after the cost ratio passes a threshold around 7, yet the false alarm rate continues
to increase. Similar evidence has been documented in the literature regarding the lack of
robustness in choosing a good cost ratio in the cost-sensitive methods (Byon et al., 2010).
This lack of robust performance is one reason why synthetic oversampling is generally more
powerful than cost-sensitive methods.

Some researchers favor one-class classification (OCC) approaches to solve imbalanced
data problems. In other words, it is better to ignore the data points due to their sparseness
in the minority data set, and instead create a closed decision boundary to characterize the
majority data only. In a detection mission, one would classify a new data point as belonging
either to the majority or the minority class. This OCC approach can be useful for some
extreme cases in which the number of data points in the minority is so few that there are no
practical ways to elicit any relevant information. In many practical cases, however, despite

2711



Pourhabib, Mallick and Ding

Data Imb. Ratio ADG SMOTE BSMOTE CSSVM Under+ENS Prob-Fit

Gaussian Mixture

7 0.886 0.879 0.879 0.886 0.601 0.879
4 0.888 0.886 0.881 0.888 0.675 0.903
3 0.885 0.887 0.878 0.890 0.659 0.912
2 0.892 0.900 0.886 0.893 0.666 0.906

Breast Cancer

6 0.900 0.896 0.897 0.895 0.814 0.882
4 0.899 0.893 0.894 0.894 0.856 0.889
3 0.905 0.901 0.902 0.899 0.879 0.900
2 0.899 0.897 0.897 0.894 0.903 0.916

Speech Recognition

29 0.894 0.877 0.868 0.871 0.663 0.860
15 0.911 0.900 0.908 0.906 0.774 0.902
10 0.891 0.898 0.903 0.891 0.867 0.915
7 0.925 0.919 0.921 0.897 0.932 0.909

Yeast

121 0.811 0.709 0.731 0.760 0.614 0.778
65 0.820 0.723 0.755 0.775 0.683 0.789
40 0.849 0.766 0.812 0.801 0.765 0.810
27 0.858 0.780 0.807 0.809 0.825 0.859

Ionosphere

6 0.896 0.890 0.884 0.891 0.796 0.854
4 0.891 0.885 0.878 0.891 0.841 0.891
3 0.895 0.888 0.881 0.894 0.869 0.905
2 0.899 0.892 0.885 0.893 0.906 0.918

Pima

6 0.681 0.622 0.679 0.668 0.680 0.718
4 0.710 0.660 0.697 0.692 0.702 0.729
3 0.721 0.687 0.699 0.692 0.709 0.720
2 0.734 0.753 0.724 0.700 0.709 0.736

Car

69 0.890 0.872 0.875 0.889 0.851 0.597
37 0.898 0.888 0.891 0.896 0.917 0.756
23 0.900 0.895 0.897 0.899 0.970 0.873
15 0.904 0.897 0.903 0.903 0.991 0.900

Ecoli

25 0.729 0.641 0.696 0.619 0.724 0.681
14 0.732 0.616 0.705 0.601 0.773 0.697
8 0.731 0.702 0.701 0.613 0.849 0.715
6 0.752 0.797 0.681 0.699 0.775 0.722

Glass

33 0.713 0.653 0.669 0.718 0.667 0.710
19 0.754 0.716 0.663 0.709 0.649 0.693
11 0.779 0.737 0.768 0.728 0.701 0.729
8 0.826 0.896 0.852 0.796 0.808 0.774

Haberman

8 0.602 0.568 0.549 0.518 0.595 0.608
4 0.640 0.543 0.584 0.569 0.586 0.601
3 0.653 0.582 0.573 0.598 0.605 0.625
2 0.681 0.596 0.584 0.596 0.618 0.627

Vehicle

9 0.714 0.693 0.708 0.712 0.700 0.701
5 0.729 0.707 0.728 0.729 0.701 0.709
3 0.783 0.778 0.763 0.831 0.712 0.729
2 0.782 0.796 0.790 0.843 0.770 0.735

CMC

10 0.589 0.532 0.538 0.586 0.607 0.549
5 0.679 0.593 0.593 0.664 0.639 0.555
3 0.682 0.646 0.667 0.712 0.652 0.605
2 0.692 0.683 0.678 0.727 0.670 0.641

Table 2: Average Area Under Curve (AUC). The largest values in each row are boldfaced.
“Imb. Ratio” means imbalance ratio, the ratio of the number of majority points
over the number of minority points in a data set.
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Data Imb. Ratio ADG SMOTE BSMOTE CSSVM Under+ENS Prob-Fit

Gaussian Mixture

7 0.053 0.034 0.037 0.032 0.061 0.012
4 0.065 0.037 0.037 0.037 0.061 0.008
3 0.048 0.047 0.050 0.048 0.050 0.008
2 0.020 0.016 0.017 0.024 0.023 0.009

Breast Cancer

6 0.008 0.013 0.012 0.009 0.009 0.015
4 0.015 0.011 0.012 0.013 0.015 0.008
3 0.011 0.010 0.010 0.012 0.012 0.010
2 0.013 0.011 0.020 0.013 0.012 0.009

Speech Recognition

29 0.021 0.021 0.018 0.018 0.021 0.018
15 0.044 0.033 0.029 0.033 0.041 0.021
10 0.027 0.042 0.020 0.034 0.031 0.010
7 0.035 0.020 0.023 0.032 0.033 0.012

Yeast

121 0.028 0.039 0.045 0.029 0.029 0.046
65 0.042 0.055 0.044 0.032 0.039 0.046
40 0.070 0.075 0.067 0.063 0.073 0.069
27 0.165 0.163 0.154 0.135 0.165 0.152

Ionosphere

6 0.038 0.032 0.030 0.036 0.037 0.028
4 0.032 0.029 0.027 0.034 0.039 0.030
3 0.028 0.031 0.020 0.029 0.028 0.013
2 0.024 0.023 0.022 0.019 0.023 0.022

Pima

6 0.026 0.022 0.021 0.031 0.030 0.017
4 0.031 0.037 0.023 0.034 0.033 0.016
3 0.019 0.020 0.021 0.021 0.023 0.018
2 0.026 0.023 0.027 0.028 0.027 0.022

Car

69 0.033 0.040 0.050 0.033 0.033 0.054
37 0.025 0.074 0.068 0.031 0.028 0.120
23 0.015 0.024 0.028 0.015 0.016 0.037
15 0.006 0.040 0.043 0.005 0.006 0.082

Ecoli

25 0.060 0.082 0.073 0.070 0.070 0.089
14 0.075 0.091 0.087 0.073 0.090 0.085
8 0.045 0.051 0.049 0.039 0.047 0.058
6 0.154 0.144 0.138 0.140 0.144 0.130

Glass

33 0.083 0.094 0.096 0.088 0.098 0.092
19 0.114 0.118 0.114 0.108 0.134 0.109
11 0.150 0.174 0.113 0.149 0.155 0.126
8 0.146 0.138 0.156 0.132 0.161 0.133

Haberman

8 0.041 0.040 0.040 0.042 0.043 0.037
4 0.053 0.057 0.043 0.049 0.060 0.029
3 0.045 0.055 0.064 0.046 0.053 0.054
2 0.049 0.053 0.053 0.043 0.049 0.050

Vehicle

9 0.016 0.019 0.017 0.017 0.019 0.017
5 0.025 0.027 0.026 0.029 0.028 0.027
3 0.027 0.024 0.024 0.029 0.029 0.019
2 0.033 0.051 0.042 0.027 0.031 0.054

CMC

10 0.026 0.048 0.057 0.023 0.025 0.080
5 0.016 0.038 0.049 0.016 0.019 0.060
3 0.020 0.021 0.022 0.020 0.024 0.022
2 0.073 0.089 0.076 0.079 0.079 0.088

Table 3: Standard deviation for Area Under Curve (AUC) reported in Table 2.
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ADG 

SMOTE 

BSMOTE 

CS-SVM 

Under+ENS 

Prob-Fit 

Figure 2: Post hoc analysis on the ranking data obtained by the Friedman test. ADG’s
mean column rank is significantly higher than other classifiers.
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Detection Power 

False Alarm 

Figure 3: Detection power (left axis) and false alarm (right axis) as a function of the cost
ratio in CS-SVM for the Haberman data set.
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Classifier ADG SMOTE BSMOTE CSSVM Under+ENS Prob-Fit

Mean of Ranking 5.125 2.865 3.104 3.469 2.833 3.604

Table 4: Mean of rankings based on Friedman test

the sparseness of the data, minority data sets still can provide useful information if utilized
appropriately. To demonstrate the usefulness of utilizing the minority data, we compare
ADG with the OCC method developed in Park et al. (2010) using four sample data sets; this
OCC method was proven to provide asymptotically the tightest bound for majority data
points. For these four sample data sets, we select the training and test data such that the
training data sets have the smallest value of imbalance ratio reported in Table 2. As Figure
4 shows, the OCC could be effective, for instance, duplicating ADG’s performance in the
case of Pima data. One drawback is that OCC methods often suffer from a high false alarm
rate, while attaining a high detection power (e.g. in the case of the Ionosphere data). When
an OCC tries to build the tightest possible closed boundary around the majority data, the
result can be an over-tightened boundary, instead of a boundary loose enough to identify all
majority data points. On the other hand, in the two-class cases, the existence of minority
data points can actually help relax the position of the decision boundary, at least locally
where these minority data points are present. For more detailed comparisons of another
OCC method with two-class classifiers, the reader may consult (Hempstalk et al., 2008);
the results presented there also confirm the argument that if minority data are utilized, one
generally observes an improvement in the minority detection.

5. Extension and Error Bounds

In this section, we consider two additional aspects regarding the proposed algorithm. First,
we seek to identify bounds on the generalization error for the ADG. Second, we extend the
proposed method to deal with the multi-class classification in which a subset of classes has
very few observations available in the training stage.

5.1 Bounds on Generalization Error

Generalization error refers to the expected error on test instances coming from the same
distribution of the training sample (Rasmussen and Williams, 2006). Specifically, if x ∼ G,
where G is the distribution of the input x, the generalization error of some decision function
h with respect to loss function L is defined as

Ex{L(h)}, (38)

where E is the expectation operator.

Let αF denote the optimal value of α obtained by solving optimization problem (3),
namely the KFD. Similar to the procedure explained in Section 3 for obtaining the prediction
label for ADG, let CU be the same one-dimensional binary classifier used for ADG, trained
on the set U = {(h(x`;αF ), y`) : x` ∈ X− ∪ X+, ` = 1, 2, . . . , n}, where κx is defined
similarly to (32) for x` ∈ X− ∪X+, and h(x`;αF ) = αTFκx`

. If the threshold value for the
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Ionosphere Vehicle 
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FA 

DP 

FA 

DP 

FA 

DP 

FA 

DP 

OCC 

ADG 

Figure 4: Comparing ROCs for ADG and OCC for four sample data sets.
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CU is vF , we have the following prediction for a test point xt using the KFD

KFD(xt) =

{
1 if h(xt;αF ) > vF ,
−1 if h(xt;αF ) ≤ vF .

(39)

Consequently, following the total law of probability, we can deduce that the generalization
error of KFD is equal to

errK = π−P [h(xt;αF ) > vF |yt = −1] + π+P [h(xt;αF ) ≤ vF |yt = 1] , (40)

where πi is the prior probability that a point belongs to the class i ∈ {−,+}.
Durrant and Kabán (2012) established an upper bound on this generalization error,

under the assumption that the data points of each class follow a Gaussian distribution once
mapped to the feature space. Specifically, having a training data set of size n = l+ + l− and
assuming data in the feature space are normally distributed with mean µi and covariance
matrix Σ for i ∈ {−,+}, then for any ρ ∈ (0, 1) the generalization error of KFD is bounded
above with probability of at least 1− ρ by ub(l, ρ) where

ub(l, ρ) =
∑

i∈{−,+}

πiΦ

(
−2

[
g(τ̄(ε))×Π−

√
n

li

(
1 +

√
2

n
log

4

ρ

)])
, (41)

where

Π =

[√
‖µ+ − µ−‖2
λmax(Σ)

+
n

l−l+

tr(Σ)

λmax(Σ)
−

√
2n

l−l+
log

4

ρ

]
+

, (42)

g(r) =
√
r

1+r for r ∈ R, λmax(Σ) is the largest eigenvalue of the covariance matrix, [.]+ =
max (0, .), Φ is the CDF of the standard normal distribution, and

τ̄(ε) =
λmax(Σ)

η

(
1 +

√
n− 2

n
+

ε√
n

)2

+ τ(Σn), (43)

where ε =
√

2 log 4
ρ , τ(Σn) denotes the condition number of Σn that is the covariance

matrix of the points in a subset of the feature space generated by the n points in X− ∪X+,
and η is a regularization constant to ensure non-singularity of the estimate of Σn. As g(.) is
a monotonic decreasing function on r ≥ 1, a smaller value for τ̄(ε) suggests a smaller value
for the upper bound. Note that assuming the regularization constant η does not need to
change as more data points are added to the training set, then the only quantities which
affect τ̄(ε) are τ(Σn) and n.

Note that as the number of observations increases, (41) yields a tighter bound, assuming
that all other quantities remain constant. This is in fact what happens in synthetic data
generation, especially for ADG, since it generates extra observations at each iteration of the
algorithm. The more subtle issue is how the estimated value of the covariance matrix Σ,
projected in the Hilbert space generated by the observation, changes with the generation
of more data points.

Note that Σn = PΣP T , where P is an orthogonal projection into the Hilbert space
spanned by the observations. Assuming that data points mapped to the feature space are
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linearly independent, we can have P n =
(
Xφ

n
T
Xφ

n

)− 1
2
Xφ

n
T

, where Xφ
n is a matrix whose

columns are φ(x`) for x` ∈ X− ∪X+. If we add a new observation xn+1 to the training set

X− ∪ X+, we will get the projection matrix Pφn+1. See the Appendix for an explanation
that as the number of data points increases, the condition number of the covariance matrix
of the space generated by the data points in the feature space decreases, which in turn
implies we achieve a tighter bound for generalization error using ADG.

In fact, as long as a synthetic data generation mechanism is embedded in a KFD frame-
work, as ADG does, we can invoke the above theoretical result on the reduction of the
generalization error. Despite the fact that SMOTE and BSMOTE can also be used, note
that their data generation mechanisms cannot be integrated with KFD. For this reason, the
above error bound result cannot be readily applied to SMOTE and BSMOTE.

5.2 Extension to Multi-class Classification

The methodology presented for the imbalanced two-class classification can be easily ex-
tended to cover multi-class classification in which a subset of classes lack sufficient obser-
vations for the training stage. Let X i = {xi1,xi2, . . . ,xili} ⊂ X denote the training set for
class i ∈ I = {1, 2, . . . , Is}, where li2 � li1 , for i1 ∈ I1, i2 ∈ I2, where I1 ∪ I2 = I and
I1∩I2 = ∅. Let Zis = {xislis+1,x

is
lis+2, . . . ,x

is
lis+kis

} ⊂ X be the absent data from the minor-

ity class is, and denote each xlis+kis by zisj . For simplicity, consider a case in which the data
in each group consist of a single cluster, i.e. C = 1; however, the following algorithm can
be readily extended to consider more clusters. Assume that the data are centered around
each covariate so they have mean 0. Sequentially solve the following optimization problem
to obtain wi for i ∈ I:

max
wi

J(wi) =
wT
i S

φ
Bwi

wT
i S

φ
Wwi

, (44)

subject to
wi ⊥ w`, ∀` < i, (45)(

wT
i φ(zisj )−wTmφ

is

)2
≤ δ, (46)

(φ(zisj )−mφ
id

)T (φ(zisj )−mφ
ir

) ≤ Λ for j = 1, 2, . . . kis , is ∈ I2, ir ∈ I1, (47)

where SφB and SφW are the between and within class scatter matrices, respectively, in the
feature space

SφB =
∑
i∈I

lim
φ
i (mφ

i )T ,

SφW =
∑
i∈I

∑
x∈X i

(φ(x)−mφ
i )(φ(x)−mφ

i )T , (48)

and mφ
i = 1

li

∑li
j=1φ(xij), for i ∈ I. For each minority class in I2, generate kis artificial

points from class ic ∈ I2. Similar to the two-class classification problem, use the Represen-
ter’s Theorem to replace each wi and φ(zisj ) −mφ

ir
as linear combinations of the training

data in the feature space as in (7) and (8). This leads to systems of linear equations as in
(26) which can be embedded into an algorithm similar to Algorithm 1.
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6. Summary

This paper presents an algorithm for solving the two-class classification with imbalanced
training data. The difficulty associated with such data structures is that the inadequate
number of data points belonging to one class (i.e. minority) leads to the problem that most
two-class classification algorithms tend to favor the majority class in labeling test points.
To solve the problem, we devise an algorithm that relies on minority data synthesis. At
each iteration we solve an optimization which considers more numbers of minority points
without explicitly specifying them. Those points affect our decision by forcing the algorithm
to set the decision boundary as though the points genuinely existed. We draw samples
from the new region to enable a more accurate estimation for the scatter matrices. Using
several simulated and real data sets, we compare the performance of the resulting ADG
algorithm with the competing methods, CS-SVM, SMOTE, BSMOTE, Under+ENS and
Prob-Fit. The results suggest that using ADG is preferable when there is a pronounced
data imbalance.

This paper is a first step for developing a data mechanism embedded in a classification
algorithm which we proved useful based on empirical evidence. Since the introduction
of SMOTE (Chawla et al., 2002), there has been significant attention to synthetic data
generation. We suggest however, that more research is needed to understand the relationship
between data generation and classification algorithms.

There are a few critical issues which deserve further attention in this regard. First,
the impact of the data structure on the data generation mechanism needs to be studied
more thoroughly. The current procedure of data generation may not be suitable for all
data structures. Certain alterations on the algorithm, based on the knowledge of how the
physical system of interest works, can help improve the performance of ADG. Second, ADG
can benefit from an investigation into certain assumptions made in the algorithm. One place
is on the assumption that the absent data reside in existing clusters. While reasonable, it
might be restrictive for some data sets. Another aspect is that in the current iteration of
algorithm, we eliminate all artificial data points that fall on the majority side; this appears
beneficial in the examples we studied. Whether or not it can be beneficial for all types of
data remains unclear. These issues are certainly important and how to address them is an
ongoing pursuit.
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Appendix A.

We want to show as the number of training data points increases, the condition number
of the projected covariance matrix into the Hilbert space generated by the data points
decreases. Let x` ∈ X for ` = 1, 2, . . . , n denote the data points in the original space and let
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ζ` for ` = 1, 2, . . . , n denote the data points mapped to a separable Hilbert space H using
a feature map φ, that is ζ` = φ(x`) for ` = 1, 2, . . . , n. Suppose Hn is an n dimensional
subspace of H spanned by ζ` for ` = 1, 2, . . . , n. If ζ` follow a normal distribution in H with
mean µ and covariance matrix Σ, we can have Σn as the projected covariance matrix into
the finite dimensional spaceHn. More precisely, Σn = P nΣP

T
n , namely P n is an orthogonal

projection into Hn, where P n =
(
Xφ

n
T
Xφ

n

)− 1
2
Xφ

n
T

and Xφ
n = [ζ` : ` = 1, 2, . . . , n]. We

want to show that the condition number of Σn is larger than or equal to that of Σn+1.

Without loss of generality, after a rotation and scaling of the data, assume
(
Xφ

p
T
Xφ

p

)
=

I, for p ∈ N, where I is the identity matrix of appropriate size. Therefore,

P n+1 =
(
Xφ

n+1

)T
=
[
(Xφ

n )T |ζTn+1

]
, (49)

and

λmax(Σn+1) = λmax
(
P n+1ΣP

T
n+1

)
= λmax

([
(Xφ

n )T

ζTn+1

]
Σ
[
Xφ

n |ζn+1

])
(50)

= λmax

([
Σn (Xφ

n )TΣζn+1

ζTn+1ΣX
φ
n ζTn+1Σζn+1

])
. (51)

Let ‖ζn+1‖2 := ζTn+1Σζn+1. Therefore,

λmax(Σn+1) ≤ λmax(Σn) + ‖ζn+1‖2, (52)

and

λmin(Σn+1) ≥ λmin(Σn) + ‖ζn+1‖2. (53)

Let τ(.) denote the condition number of a matrix, so

τ(Σn+1) =
λmax(Σn+1)

λmin(Σn+1)
≤
λmax(Σn) + ‖ζn+1‖2

λmin(Σn) + ‖ζn+1‖2
< τ(Σn). (54)
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Müllers. Fisher discriminant analysis with kernels. In Neural Networks for Signal Pro-
cessing IX, 1999. Proceedings of the 1999 IEEE Signal Processing Society Workshop.,
pages 41 –48, Aug 1999.

Chiwoo Park, Jianhua Z. Huang, and Yu Ding. A computable plug-in estimator of minimum
volume sets for novelty detection. Operations Research, 58(5):1469–1480, Sep 2010.

Dan Pelleg and Andrew Moore. X -means: Extending K -means with efficient estimation of
the number of clusters. In Proceedings of the Seventeenth International Conference on
Machine Learning, pages 727–734. Morgan Kaufmann, 2000.

Foster Provost, Tom Fawcett, and Ron Kohavi. The case against accuracy estimation for
comparing induction algorithms. In Proceedings of the Fifteenth International Conference
on Machine Learning, pages 445–453. Morgan Kaufmann, 1997.

2723



Pourhabib, Mallick and Ding

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

Kai Ming Ting. An instance-weighting method to induce cost-sensitive trees. IEEE Trans-
actions on Knowledge and Data Engineering, 14(3):659–665, 2002.

Lloyd N. Trefethen and David Bau III. Numerical Linear Algebra. SIAM: Society for
Industrial and Applied Mathematics, 1997.

Jakob J. Verbeek, Nikos Vlassis, and Ben Kröse. Efficient greedy learning of Gaussian
mixture models. Neural Computation, 15(2):469–485, 2003.

Byron C. Wallace and Issa J. Dahabreh. Class probability estimates are unreliable for
imbalanced data (and how to fix them). In IEEE Twelfth International Conference on
Data Mining (ICDM), pages 695–704, 2012.

Byron C. Wallace, Kevin Small, Carla E. Brodley, and Thomas A. Trikalinos. Class imbal-
ance, redux. In IEEE Eleventh International Conference on Data Mining (ICDM), pages
754–763, 2011.

Gary M. Weiss. Mining with rarity: a unifying framework. ACM SIGKDD Explorations
Newsletter-Special Issue on Learning from Imbalanced Datasets, 6(1):7–19, 2004.

2724


