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Abstract

The traditional two-stage stochastic programming approach assumes the distribution of the

random parameter in a problem is known. In most practices, however, the distribution is actu-

ally unknown. Instead, only a series of historic data are available. In this paper, we develop a

data-driven stochastic optimization framework to provide a risk-averse decision making under

uncertainty. In our approach, starting from a given set of historical data, we first construct a

confidence set for the unknown probability distribution utilizing a family of ζ-structure proba-

bility metrics. Then, we describe the reference distributions and solution approaches to solving

the developed two-stage risk-averse stochastic program, corresponding to the given set of histor-

ical data, for the cases in which the true probability distributions are discrete and continuous,

respectively. More specifically, for the case in which the true probability distribution is discrete,

we reformulate the risk-averse problem to a traditional two-stage robust optimization problem.

For the case in which the true probability distribution is continuous, we develop a sampling

approach to obtaining the upper and lower bounds of the risk-averse problem, and prove that

these two bounds converge to the optimal objective value uniformly at the sample size increases.

Furthermore, we prove that, for both cases, the risk-averse problem converges to the risk-neutral

one as more data samples are observed, and derive the convergence rate, which indicates the

value of data. Finally, the experiment results on newsvendor and facility location problems show

how numerically the optimal objective value of the risk-averse stochastic program converges to

the risk-neutral one, verifying the effectiveness of our proposed approach.

Keywords: stochastic program, ζ-structure probability metrics, risk-averse, value of data
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1 Introduction

As an effective tool to solve optimization under uncertainty problems, stochastic programming

has been widely applied to solve practical problems in energy, finance, production planning, and

transportation scheduling, among others [5]. Among this, a specific class of stochastic programs,

named two-stage stochastic programs, have been studied extensively. The traditional two-stage

stochastic program (denoted as SP) can be described as follows:

minx cTx+ EP[Q(x, ξ)] (1)

(SP) s.t. x ∈ X,

where x is the first-stage decision variable with its feasible region defined as a compact convex set

X, Q(x, ξ) = miny(ξ)∈Y {H(y(ξ)) : G(x, y(ξ)) ≤ 0} (assumed a continuous function on ξ) represents

the second-stage problem, Y represents the feasible region for the second-stage decision variable

y(ξ), and the random variable ξ is defined on a probability space (Ω, σ(Ω),P), where Ω is the

sample space for ξ, σ(Ω) is the σ-algebra of Ω, and P is the associate probability distribution. In

this formulation, the probability distribution P is assumed known and significant research progress

has been made in theoretical analysis and developing efficient algorithms such as sample average

approximation approaches [35].

However, in practice, due to limited available information on the random parameters, it is

generally difficult to obtain the true probability distribution. Instead, only a series of historical

data taken from the true distribution can be observed. Although we can derive a distribution

for the above (SP) that best fits the given set of historical data, so as to approximate the true

distribution, this approach can lead to a final solution suboptimal and away from the true optimal

solution, in particular for the case in which the amount of historical data are very limited. To

address this issue, risk-averse stochastic optimization approaches allowing distribution ambiguity

(also known as distributionally robust optimization) have been investigated recently [11]. In this

approach, instead of deriving a unique true distribution for the above (SP), a confidence set D

for the unknown true distribution is derived and accordingly the risk-averse two-stage stochastic

program can be formulated as follows (denoted as RA-SP), with the objective of minimizing the

2



total expected cost under the worst-case distribution in D:

minx cTx+ max
P∈D

EP[Q(x, ξ)] (2)

(RA-SP) s.t. x ∈ X.

As compared to (SP), (RA-SP) allows the distribution ambiguity and the confidence set D ensures

that the true description is within this set with certain confidence level (say, e.g., 95%). Therefore,

(RA-SP) provides tolerance for the unknown probability distribution with the tradeoff of leading

to a risk-averse solution which corresponds to a larger objective value.

It can be observed from (RA-SP) that constructing D is crucial for solving the distributionally

robust stochastic program, because different shapes and sizes of D affect the computational com-

plexity to solve the problem and the robustness of the final solution. One approach to constructing

the uncertainty set is based on the moment information [34, 11]. In this approach, the mean values

and covariance matrices of the random variables are estimated based on the historical data and the

confidence set D is constructed by restricting the ambiguous distribution satisfying the constraints

with the same mean value and covariant matrix. This uncertainty set can also be constructed by al-

lowing the moment ambiguity [11]. That is, D = {P ∈M+ : EP[ξ] ∈ ES(µ0), EP[(ξ−µ0)(ξ−µ0)>] �

γ2Σ0}, where µ0 ∈ RK and Σ0 ∈ RK×K are given, ES(µ0) represents an ellipsoid centered at µ0,

and M+ represents the space of all probability distributions on (Ω, σ(Ω)). The related research

works on moment-based confidence sets are described in [33], [41], [43], [44], and [2], among oth-

ers. Along this direction, eventually the problem can be reformulated as a conic or semidefinite

program and efficient algorithms can be developed accordingly. This approach can guarantee the

system robustness by deriving the confidence level guarantee for the ambiguous distribution to be

within the uncertainty set D. However, the conservatism could not be vanished, because the mean

value and covariance matrix can not uniquely define a probability distribution. Even for the case

in which D = {P ∈ M+ : EP[ξ] = γ1 and EP[ξ2] = γ2}, where γ1 and γ2 are estimated first and

second-moment values, there are still a significant amount of distributions in D. The objective

value of (RA-SP) could not converges to that of (SP).

The other approach to constructing the confidence set is based on the density (or distribution)

information [8, 25]. With a reference distribution P0 determined by the historical data (e.g., the
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empirical distribution function) and a predefined distance measure d(P0,P) to measure the distance

between P0 and the ambiguous distribution P, the confidence set D can be represented as

D = {P : d(P,P0) ≤ θ}, (3)

where the tolerance θ is dependent on the size of historical data observed. Intuitively, D gets tighter

around the true distribution P with more historical data observed. That is, θ becomes smaller and

hopefully achieves zero eventually, and accordingly (RA-SP) becomes less conservative and achieves

risk-neutral (i.e., (SP)) eventually. There has been significant research progress made by using the

data-driven approach to constructing the confidence set D. For instance, in [3], φ-divergences

are studied to measure the distance between the empirical distribution and the true distribution

d(P,P0). Under this setting, the distance is in the form dφ(P,P0) :=
∫

Ω φ(f(ξ)/f0(ξ))f0(ξ)dξ with

reference density function f0 corresponding to P0 and true density function f corresponding to

P. By using this distance measure, the single-stage distributionally robust stochastic program can

be successfully reformulated to be a tractable problem. This approach has also been extended to

the two-stage case in [27] and the chance constrained case in [23]. Besides these works, it is also

well-known that φ-divergences, especially KL-divergence dKL(P,P0) :=
∫

Ω log(f(ξ)/f0(ξ))f0(ξ)dξ,

has been widely applied in machine learning and information theory, e.g., [29] and [38].

Nevertheless, φ-divergences are in general not metrics because it can be observed from their

definitions that most φ-divergences do not satisfy the triangle inequality and even the symmetric

property dφ(P,P0) = dφ(P0,P). Meanwhile, although φ-divergences converge to χ2 distributions for

the discrete distribution cases [3], as indicated in [14] and the metrics’ relationships in [18], there

are no convergence results for general φ-divergences for the case in which the true density function

f is continuous and an empirical probability distribution is selected as P0.

In this paper, we follow the direction of constructing the confidence set based on the density

(or distribution) information. We ensure the distance measures to be metrics. More specifically, we

study a family of metrics, named ζ-structure probability metrics, to help construct the confidence

set D. Given two probability distributions P and Q, the ζ-structure probability metrics are defined

as follows:

dζ(P,Q) = sup
h∈H

∣∣∣∣∫
Ω
hdP−

∫
Ω
hdQ

∣∣∣∣ ,
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where H is a family of real-valued bounded measurable functions on Ω. The ζ-structure prob-

ability metrics family is first introduced in [42], and it has been applied in information theory

[20], mathematical statistics [37], mass transportation problems [32], and several areas in computer

science, including probabilistic concurrency, image retrieval, data mining, and bioinformatics [13].

The members in the ζ-structure probability metrics family are Kantorovich metric, Fortet-Mourier

metric, Total Variation metric, Bounded Lipschitz metric, and Kolmogorov/Uniform metric. These

metrics will be described in details in Section 2. The discrete distribution case for a family member

of this family of probability metrics, Kantorovich metric, is utilized early to solve the portfolio

selection [31] problem. In addition, Prohorov metric is studied in [17] to solve ambiguous chance

constrained problems. In our approach, we utilize ζ-structure probability metrics to construct the

confidence set for the probability distribution in (RA-SP) (see, e.g., (2)). Then, we develop algo-

rithms to solve (RA-SP) for both discrete and continuous true distribution cases. Finally, we show

that (RA-SP) converges to (SP) (see, e.g., (1)) as the size of historical data increases to infinity

and further explore the “value of data” by deriving the convergence rate and conducting numerical

experiments. Our contributions can be summarized as follows:

1. We study a new family of metrics, ζ-structure probability metrics, to construct the confidence

set D for the ambiguous distributions and explore the relationships among the members in

the ζ-structure probability metrics family.

2. We develop a solution framework to solve (RA-SP), corresponding to a given size of historical

data, for both discrete and continuous distribution cases. For the case in which the true

distribution P is discrete, we can reformulate (RA-SP) as a traditional two-stage robust

optimization problem. For the case in which P is continuous, we propose a sampling approach,

which uses discrete distributions to approximate the continuous distribution, to solving (RA-

SP).

3. We perform the convergence analysis and derive the convergence rates for both outer and

inner loops, where the outer loop shows the relationship between the conservatism of (RA-

SP) and the size of historical data, and the inner loop describes the solution algorithms to

solve each specific (RA-SP) once the size of the historical data set is given. More specifically,

for the discrete case, we can prove that as the size of historical data increases to infinity, (RA-
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SP) converges to (SP) exponentially fast (the outer loop). Meanwhile, for a given historical

data set (the inner loop), (RA-SP) can be reformulated as a traditional two-stage robust

optimization problem. For the continuous case, we can prove that the outer loop converges

to the risk-neutral case uniformly. Meanwhile, in the inner loop for a given sample size, our

solution method provides the lower and upper bounds of the optimal objective value of (RA-

SP), and these bounds converge to the optimal objective value of (RA-SP) uniformly as the

sample size goes to infinity.

The remaining part of this chapter is organized as follows: In Section 2, we introduce the ζ-structure

probability metrics family and study the relationships among the members in this family. Since

our developed algorithm to solve the continuous case requires the solution techniques to solve the

discrete case, we first develop a solution approach including deriving convergence rates to solve

(RA-SP) for the discrete case in Section 3. Then, in Section 4, we develop a solution framework

to solve the continuous true distribution case, and accordingly explore the convergence rates. In

Section 5, we perform numerical studies on data-driven risk-averse newsvendor and facility location

problems. Finally, in Section 6, we conclude our research.

2 ζ-Structure Probability Metrics

In this section, we introduce the family of ζ-structure probability metrics. We first provide the

definitions of each member of this family: Kantorovich metric, Fortet-Mourier metric, Total Varia-

tion metric, Bounded Lipschitz metric, and Kolmogorov/Uniform metric. Then, we investigate the

relationships among these members. We show that if the supporting space Ω is bounded, the Total

Variation metric is a dominating metric in the family, i.e., the convergence of the Total Variation

metric can guarantee those of other metrics in the family.

2.1 Definition

As described in Section 1, for any two probability distributions P and Q, the ζ-structure probability

metrics are defined by dζ(P,Q) := suph∈H |
∫

Ω hdP −
∫

Ω hdQ|, where H is a family of real-valued

bounded measurable functions on Ω. In general, the ζ-structure metrics satisfy the properties of

metrics, i.e., dζ(P,Q) = 0 if and only if P = Q, dζ(P,Q) = dζ(Q,P) (symmetric property), and
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dζ(P,Q) ≤ dζ(P,O) + dζ(O,Q) for any probability distribution O (triangle inequality). In the

following, we define ρ(x, y) as the distance between two random variables x and y and n as the

dimension of Ω. If a random variable x follows distribution P, we denote it as P = L(x). Then, we

derive different types of metrics in this family based on variant definitions of H.

• Kantorovich metric: For Kantorovich metric (denoted as dK(P,Q)), H = {h : ‖h‖
L
≤ 1},

where ‖h‖
L

:= sup {(h(x)− h(y))/ρ(x, y) : x 6= y in Ω}. Many metrics known in statistics,

measure theory, ergodic theory, and functional analysis, are special cases of the Kantorovich

metric [39]. Kantorovich metric also has many applications in transportation theory [32] and

in computer science (including probabilistic concurrency, image retrieval, data mining, and

bioinformatics [13]).

• Fortet-Mourier metric: For Fortet-Mourier metric (denoted as dFM(P,Q)), H = {h :

‖h‖
C
≤ 1}, where ‖h‖

C
:= sup {(h(x)− h(y))/c(x, y) : x 6= y in Ω} and c(x, y) = ρ(x, y) max{1,

ρ(x, a)p−1, ρ(y, a)p−1} for some p ≥ 1 and a ∈ Ω. Note here that when p = 1, Fortet-Mourier

metric is the same as Kantorovich metric. Therefore, Fortet-mourier metric is usually uti-

lized as a generalization of Kantorovich metric, with the applications on mass transportation

problems [32].

• Total Variation metric: For Total Variation metric (denoted as dTV(P,Q)), H = {h :

‖h‖∞ ≤ 1}, where ‖h‖∞ := supx∈Ω |h(x)|. Another equivalent definition of the Total Vari-

ation metric is dTV(P,Q) := 2 supB∈σ(Ω) |P(B) − Q(B)|, for which we use often in the later

analysis. The total variation metric has a coupling characterization (detailed proofs are shown

in [26]):

dTV(P,Q) = 2 inf{Pr(X 6= Y ) : P = L(X),Q = L(Y )}.

The total variation metric can be applied in information theory [9] and in studying the

ergodicity of Markov Chains [28]. Later on, we will prove that the convergence with respect

to the Total Variation metric implies the convergences with respect to other metrics in the

general ζ-structure probability metrics family when Ω is bounded.

• Bounded Lipschitz metric: For Bounded Lipschitz metric (denoted as dBL(P,Q)), H =

{h : ‖h‖
BL
≤ 1}, where ‖h‖

BL
:= ‖h‖

L
+ ‖h‖∞. One important application of the Bounded
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Lipschitz metric is to prove the convergence of probability measures in weak topology [15].

• Uniform (Kolmogorov) metric: For Uniform metric (also called Kolmogorov metric,

denoted as dU(P,Q)), H =
{
I(−∞,t], t ∈ Rn

}
. The Uniform metric is often used in proving the

classical central limit theorem, and commonly utilized in the Kolmogorov-Smirnov statistic

for hypothesis testing [36]. According to the definition, we have dU(P,Q) = supt |P(x ≤

t)−Q(x ≤ t)|.

• Wasserstein metric: Wasserstein metric is defined as dW(P,Q) := infπ{Eπ[ρ(X,Y )] : P =

L(X),Q = L(Y )}, where the infimum is taken over all joint distributions π with marginals

P and Q. Although Wasserstein metric is not a member in the general ζ-structure probabil-

ity metrics family, we list it here because by the Kantorovich-Rubinstein theorem [24], the

Kantorovich metric is equivalent to the Wasserstein metric. In particular, when Ω = R,

dW(P,Q) =

∫ +∞

−∞
|F (x)−G(x)|dx,

where F (x) and G(x) are the distribution functions derived from P and Q respectively. This

conclusion holds following the argument that infπ{Eπ[ρ(X,Y )] : P = L(X),Q = L(Y )} =∫ 1
0 |F

−1(t) − G−1(t)|dt, as stated in Theorem 6.0.2 in [1] and
∫ 1

0 |F
−1(t) − G−1(t)|dt =∫ +∞

−∞ |F (x)−G(x)|dx. Wasserstein metric also has wide applications on transportation prob-

lems [32].

2.2 Relationships Among Metrics

In this subsection, we explore the relationships among the members in the ζ-structure probability

metrics family. Based on the relationships, we demonstrate that the Total Variation metric is

dominated by other members in the family if the supporting space Ω is bounded. That is, if we can

prove the convergence for the Total Variation metric case in our later analysis for the data-driven

risk-averse stochastic program, then the convergence results for other members are guaranteed with

no smaller convergence rates.

First, we explore the relationships between the Total Variation metric and the Kantorovich

(Wasserstein) metric. Meanwhile, we use Wasserstein metric and Kantorovich metric interchange-
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ably since they are equivalent. We denote Ø as the diameter of Ω and have the following lemma.

Lemma 1. The relationships between the Total Variation metric and the Kantorovich (Wasser-

stein) metric are as follows:

• If Ω is bounded, 2dK(P,Q) ≤ Ø · dTV(P,Q);

• If Ω is a finite set, dmin · dTV(P,Q) ≤ 2dK(P,Q), where dmin = minx 6=y ρ(x, y).

Proof. Since Kantorovich and Wasserstein metrics are equivalent, we only need to show the rela-

tionship between the Wasserstein metric and the Total Variation metric, for which the detailed

proofs are provided in Theorem 4 in [18].

Next, we study the relationships among the Bounded Lipschitz metric, the Kantorovich (Wasser-

stein) metric, and the Total Variation metric. Since ‖h‖
BL

:= ‖h‖
L

+ ‖h‖∞, the feasible region of h

for the Bounded Lipschitz metric is more restrictive than the one for the Kantorovich (Wasserstein)

metric or the one for the Total Variation metric. Therefore we have the following lemma:

Lemma 2. The relationships among the Bounded Lipschitz metric, the Kantorovich (Wasserstein)

metric, and the Total Variation metric are as follows:

• dBL(P,Q) ≤ dK(P,Q),

• dBL(P,Q) ≤ dTV(P,Q).

Moreover, the relationships between the Total Variation metric and the Uniform metric can be

obtained by the definitions of each metric. The Total Variation metric is to find a set B among all

the Borel sets in σ(Ω), to maximize the value of 2|P(B)−Q(B)|. But the Uniform metric is to find

a set B among all the sets in the form (−∞, x], to maximize the value of |P(B)−Q(B)|. Since set

(−∞, x] is a borel set, we have the following conclusion holds.

Lemma 3. The relationship between the Total Variation metric and the Uniform metric is: 2dU(P,Q) ≤

dTV(P,Q).

Finally, we explore the relationships between the Kantorovich (Wasserstein) metric and the

Fortet-Mourier metric. We have the following lemma:
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Lemma 4. The relationships between the Kantorovich (Wasserstein) metric and the Fortet-Mourier

metric are as follows:

• dK(P,Q) ≤ dFM(P,Q),

• dFM(P,Q) ≤ Λ · dK(P,Q),

where Λ = max{1,Øp−1}.

Proof. The first statement is obvious following the definitions of the Kantorovich metric and

the Fortet-Mourier metric. For the second statement, for the Fortet-Mourier metric, we have

|h(x)−h(y)| ≤ c(x, y) = ρ(x, y) max{1, ρ(x, a)p−1, ρ(y, a)p−1} ≤ ρ(x, y)Λ, where the equation holds

following the definition of c(x, y). Now we can observe

dFM(P,Q) ≤ sup
h:|h(x)−h(y)|≤Λ·ρ(x,y)

∣∣∣∣∫
Ω
hdP−

∫
Ω
hdQ

∣∣∣∣
= Λ · sup

h:|h(x)−h(y)|≤Λ·ρ(x,y)

∣∣∣∣∫
Ω
h/ΛdP−

∫
Ω
h/ΛdQ

∣∣∣∣
= Λ · sup

g:|g(x)−g(y)|≤ρ(x,y)

∣∣∣∣∫
Ω
gdP−

∫
Ω
gdQ

∣∣∣∣
= Λ · dW(P,Q),

where the last equality follows the definition of Kantorovich metric. Then the second statement of

Lemma 4 holds.

To summarize, the relationships among the members in the ζ-structure probability metrics

family are shown in Figure 1.

Based on Lemmas 1 to 4, we conclude the following proposition without proof.

Proposition 1. If the support Ω is bounded, the Kantorovich metric, the Fortet-Mourier metric,

the Bounded Lipschitz metric, and the Kolmogorov metric are dominated by the Total Variation

metric.

With the above lemmas and proposition, we explore methodologies to solve (RA-SP) (i.e., For-

mulation (2)) and derive the corresponding convergence rates in the next two sections by considering

two cases: (i) the true probability distribution is discrete, and (ii) the true probability distribution

is continuous.
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Figure 1: Relationships among the members in the ζ-structure probability metrics family

3 Discrete Case

In this section, we investigate the solution methodologies to solve the data-driven risk-averse two-

stage stochastic program (i.e., RA-SP as described in (2)) with ζ-structure probability metrics,

for the case in which the true distribution is discrete. For analysis convenience, we assume the

supporting space Ω is bounded, which is common for a variety of practical problems. This section

is organized by answering the following important questions:

(1) How to determine the reference distribution P0 as described in (3)?

(2) How to represent the value of θ depending on the amount of historical data, i.e., the con-

vergence rate?

(3) How to solve the problem with respect to different ζ-structure probability metrics?

In our study, we first consider the case in which the supporting space Ω is finite (e.g., possible

scenarios are denoted as ξ1, ξ2, · · · , and ξN ). For the case in which the supporting space Ω is

infinite, we can apply the solution framework for the continuous probability distribution case, for

which we will discuss later in Section 4.
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3.1 Reference Distribution

Given M historical data ξ1
0 , ξ

2
0 , · · · , ξM0 , to estimate the reference distribution P0, we consider the

empirical distribution of the historical data samples, i.e., the cumulative distribution function (cdf)

that puts mass 1/M at each data point ξi0, i = 1, · · · ,M . Formally, the empirical distribution is

defined as

P0(x) =
1

M

M∑
i=1

δξi0
(x),

where δξi0
(x) is an indicator variable equal to 1 if ξi0 ≤ x and 0 otherwise. In this case, since the

supporting space is discrete, the reference distribution P0 can be represented by its mass probability

p1
0, p

2
0, · · · , pN0 , where pi0 is equal to the ratio between the number of historical data samples matching

ξi and M .

3.2 Convergence Rate Analysis

After identifying the reference distribution P0, we discuss the value of θ, i.e., the convergence rate

of the empirical distribution to the true distribution for the discrete case. We first study the

convergence rate of the Total Variation metric. Then we explore the convergence rates of other

metrics in the family.

For the Total Variation metric, if the true distribution is discrete, Pinsker’s inequality [10]

shows dTV(P,P0) ≤
√
dKL(P,P0), where dKL(P,P0) is the discrete case KL-divergence defined as∑

i ln
(
p0
i /pi

)
p0
i . Since it is shown in [30] that dKL(P,P0) converges in probability to a χ2 distributed

random variable as the number of historical data samples M goes to infinity, we can claim that

the convergence rate of dTV(P0,P) is bounded by that of a χ2 distributed random variable as

M → +∞. Meanwhile, note here that for the case in which the true distribution is continuous,

the Total Variation metric does not converge as described in [14] if the empirical distribution is

selected as the reference distribution P0, which is also the reason why the KL-divergence does not

converge for the continuous case as indicated in Section 1.

For the Uniform (Kolmogorov) metric, the convergence property and the convergence rate can

be obtained by utilizing the following Dvoretzky-Kiefer-Wolfowitz inequality.

Proposition 2 (Dvoretzky-Kiefer-Wolfowitz inequality [16]). For a single dimension case (i.e.,

12



n = 1), P(dU(P0,P) ≤ ε) ≥ 1 − 2e−2Mε2. For a high dimension case (i.e., n > 1), for any α > 0,

there exists a constant number Cα such that P(dU(P0,P) ≤ ε) ≥ 1− Cαe−(2−α)Mε2.

Now we prove the convergence result for the Kantorovich (Wasserstein) metric. We can obtain

the following conclusion.

Proposition 3. For a general dimension case (i.e., n ≥ 1), we have

P (dK(P0,P) ≤ ε) ≥ 1− exp

(
− ε2

2Ø2
M

)
.

Proof. Let us define set

B := {µ ∈ P(Ω) : dK(µ,P) ≥ ε} (4)

where P(Ω) is the set of all probability measures defined on Ω. Define set C(Ω) be the collection of

all bounded continuous functions φ: Ω→ R. Following the definitions, for each φ ∈ C(Ω), we have

P(dK(P,P0) ≥ ε) = Pr(P0 ∈ B) (5)

≤ Pr
(∫

Ω
φdP0 ≥ inf

µ∈B

∫
Ω
φdµ

)
(6)

≤ exp

(
−M inf

µ∈B

∫
Ω
φdµ

)
E
(
eM

∫
Ω φdP0

)
(7)

= exp

(
−M inf

µ∈B

{∫
Ω
φdµ− 1

M
logE

(
eM

∫
Ω φdP0

)})
= exp

(
−M inf

µ∈B

{∫
Ω
φdµ− 1

M
logE

(
e
∑M
i=1 φ(ξi)

)})
(8)

= exp

(
−M inf

µ∈B

{∫
Ω
φdµ− log

∫
Ω
eφdP

})
, (9)

where inequality (5) follows the definition of B, inequality (6) follows from the fact that P0 ∈ B

(see (4)) and µ is the one in B that achieves the minimum of
∫

Ω φdµ, inequality (7) follows from

the Chebyshev’s exponential inequality [21], equation (8) follows from the definition of P0, and

equation (9) follows from the assumption that the historical data are independently drawn from

the true distribution P.

Now we define ∆(µ) := supφ∈C(Ω)

∫
Ω φdµ− log

∫
Ω e

φdP. Following the continuity and bounded-

ness from the definition of C(Ω), there exists a series φn such that limn→∞
∫

Ω φndµ− log
∫

Ω e
φndP =

∆(µ). Therefore, for any small positive number ε′ > 0, there exists a constant number n0 such that
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∆(µ) − (
∫

Ω φndµ − log
∫

Ω e
φndP) ≤ ε′ for any n ≥ n0. Therefore, according to (9) by substituting

φ with φn, we have

Pr(P0 ∈ B) ≤ exp

(
−M inf

µ∈B

{∫
Ω
φndµ− log

∫
Ω
eφndP

})
≤ exp

(
−M inf

µ∈B
(∆(µ)− ε′)

)
. (10)

According to Lemma 6.2.13 in [12], we have

∆(µ) = dKL(µ,P). (11)

For the case µ ∈ B, following (4), we have dK(µ,P) ≥ ε. In addition, it is shown in “Particular case

5” in [7] that

dK(µ,P) ≤ Ø
√

2dKL(µ,P) (12)

holds for ∀µ ∈ P(Ω). Therefore, following (12) we have

dKL(µ,P) ≥ ε2/(2Ø2). (13)

Therefore, combining (10), (11), and (13), we have

Pr(P0 ∈ B) ≤ exp

(
−M

(
ε2

2Ø2
− ε′

))
.

Let ε′ = δ/M for any arbitrary small positive δ. Then, we have

P(dK(P,P0) ≥ ε) = Pr(P0 ∈ B) ≤ exp

(
− ε2

2Ø2
M + δ

)
.

Since δ can be arbitrarily small, we have P (dK(P0,P) ≤ ε) ≥ 1− exp(−ε2M/(2Ø2)).

We then can immediately obtain the convergence rates as follows for the Fortet-Mourier and

Bounded Lipschitz metrics, following the relationships among the ζ-structure probability metrics

as described in Figure 1 in Subsection 2.2.

Corollary 1. For a general n ≥ 1, we have P (dFM(P0,P) ≤ ε) ≥ 1 − exp(−ε2M/(2Ø2Λ2)) and
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P(dBL(P0,P) ≤ ε) ≥ 1− exp(−ε2M/(2Ø2)).

With the convergence rates, we can calculate the value of θ accordingly. For instance, let us

take the convergence rate for the Kantorovich (Wasserstein) metric obtained in Proposition 3 as an

example to illustrate the process. Assuming the confidence level is set to be η, i.e., P (dK(P0,P) ≤

θ) ≥ 1 − exp(−θ2M/(2Ø2)) = η, we can obtain θ = Ø
√

2 log(1/(1− η))/M . Similarly, we can

calculate the value of θ for different metrics based on Corollary 1.

Given that the reference distribution converges to the true distribution exponentially fast, next,

we explore the convergence property of the optimal solution and the optimal objective value of

(RA-SP) to those of SP (i.e., Formulation (1)). We have the following conclusion.

Theorem 1. For the case in which the true distribution is discrete, the optimal solution and the

optimal objective value of (RA-SP) (i.e., Formulation (2)), converge to those of SP (i.e., Formu-

lation (1)), respectively.

Proof. According to Proposition 3 and Corollary 1, we know as the historical data size M goes

to infinity, the true distribution P∗ converges to P0 in probability. Since as M goes to infinity, θ

goes to zero, so the worst-case probability distribution, denoted as P′M, converges to P0. Therefore,

the worst-case distribution P′M converges to the true distribution P∗ in probability. Due to the

assumption that the function Q(x, ξ) is bounded and continuous with ξ, according to the Helly-

Bray theorem [4], we can claim that for any given x ∈ X,

lim
M→∞

sup
P:d(P,P0)≤θM

EP[Q(x, ξ)] = lim
M→∞

EP′M [Q(x, ξ)] = EP∗ [Q(x, ξ)]. (14)

With equation (14), we first explore the convergence property of the optimal objective values. We

represent v̂ as the optimal objective value and x̂ as the optimal solution of the following problem:

minx cTx+ lim
M→∞

sup
P:d(P,P0)≤θM

EP[Q(x, ξ)] (15)

s.t. x ∈ X.

Besides, we represent v̄ as the optimal objective value and x̄ as the optimal solution of the risk-

neutral problem SP (i.e., the problem as described in (1)). Then we need to prove that v̂ = v̄ by
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a contradiction method. Due to the fact that v̂ ≥ v̄, if the equation v̂ = v̄ does not hold, we have

v̂ > v̄. According to equation (14), we can observe that

cT x̄+ lim
M→∞

sup
P:d(P,P0)≤θM

EP[Q(x̄, ξ)] = cT x̄+ EP∗ [Q(x̄, ξ)].

Therefore,

cT x̂+ lim
M→∞

sup
P:d(P,P0)≤θM

EP[Q(x̂, ξ)]

= v̂ > v̄ = cT x̄+ EP∗ [Q(x̄, ξ)]

= cT x̄+ lim
M→∞

sup
P:d(P,P0)≤θM

EP[Q(x̄, ξ)],

which violates that x̂ is the optimal solution to problem (15). Consequently, we have v̂ = v̄, which

indicates the convergence property of the optimal objective values. Besides, since X is compact

and accordingly the optimal solution of formulation (2) converges to x̂, and x̂ is also an optimal

solution of formulation (1) due to v̂ = v̄, we can claim that the optimal solution of formulation (2)

converges to that of formulation (1).

3.3 Solution Approach

In this section, we explore the methodology to solve the problem. Assuming Ω = {ξ1, ξ2, · · · , ξN},

(RA-SP) (i.e., Formulation (2)) can be reformulated as:

minx cTx+ max
pi

N∑
i=1

piQ(x, ξi)

s.t.
∑
i

pi = 1,

max
hi

N∑
i=1

hip
0
i −

N∑
i=1

hipi ≤ θ, ∀hi : ‖h‖ζ ≤ 1. (16)

For ‖h‖ζ ≤ 1, according to different members in the ζ family, we have

• Kantorovich: |hi − hj | ≤ ρ(ξi, ξj), ∀i, j,

• Fortet-Mourier: |hi − hj | ≤ ρ(ξi, ξj) max{1, ρ(ξi, a)p−1, ρ(ξj , a)p−1}, ∀i, j,
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• Bounded-Lipschitz: |hi − hj | ≤ ρ(ξi, ξj), |hi| ≤ 1, ∀i, j,

• Total Variation: |hi| ≤ 1, ∀i.

For the above four metrics, the constraints can be summarized as
∑

i aijhi ≤ bj , j = 1, · · · , J . First,

we develop the reformulation of constraint (16). Considering the problem

maxhi

N∑
i=1

hip
0
i −

N∑
i=1

hipi

s.t.

N∑
i

aijhi ≤ bj , j = 1, · · · , J,

we can get its dual formulation as follows:

min
J∑
j=1

bjuj

s.t.
J∑
j=1

aijuj ≥ p0
i − pi,∀i = 1, · · · , N,

where u is the dual variable. Therefore, for the discrete distribution case, (RA-SP) can be refor-

mulated as follows:

minx cTx+ max
pi

N∑
i=1

piG(x, ξi)

(FR-M) s.t.

N∑
i=1

pi = 1,

J∑
j=1

bjuj ≤ θ,

J∑
j=1

aijuj ≥ p0
i − pi, ∀i = 1, · · · , N.
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For the uniform metric, we can obtain the reformulation directly from the definition of Uniform

metric:

min cTx+ max
pi

N∑
i=1

piG(x, ξi)

(FR-U) s.t.
∑
i

pi = 1,∣∣∣∣∣
j∑
i=1

(p0
i − pi)

∣∣∣∣∣ ≤ θ,∀j = 1, · · · , J.

Next, we summarize the algorithm to solve the case in which the true distribution is discrete.

Algorithm 1: Algorithm for the discrete case

Input: Historical data ξ1, ξ2, · · · , ξN i.i.d. drawn from the true distribution. The confidence
level of set D is set to be η.

Output: The objective value of the risk-averse problem (RA-SP).
1 Obtain the reference distribution P0(x) = 1

N

∑N
i=1 δξi(x) and the value of θ based on the

historical data.
2 Use the reformulation (FR-M) or (FR-U) to solve the problem.
3 Output the solution.

4 Continuous Case

In this section, we discuss the case in which the true distribution is continuous. We accordingly

develop the methodologies to solve the continuous case by answering the three questions (1), (2),

and (3) in Section 3, respectively.

4.1 Reference Distribution

For the continuous case, we consider using Kernel Density Estimation to construct the reference

probability density function (pdf) from the given set of historical data. Assuming there are M

historical data samples, e.g., ξ1,ξ2,· · · , ξM , i.i.d. drawn from the true distribution, the kernel

density function is defined as

fM(x) =
1

MhnM

M∑
i=1

K

(
x− ξi

hM

)
, (17)
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where n is the dimension of x, hM is the bandwidth, and K(x) =
∏n
k=1 k(xk), in which k is a Borel

measurable function (kernel) with dimension 1, satisfying k ≥ 0 and
∫
R k(x)dx = 1. Note here that

K(x) also satisfies K ≥ 0 and
∫
Rn K(x)dx = 1. By using the kernel density estimation, we can

first observe that the reference probability distribution P0 derived from fM(x) is continuous.

4.2 Convergence Analysis

By using kernel density estimation, we analyze the convergence properties including the convergence

rates of the reference distribution to the true distribution, corresponding to different metrics in

the ζ-structure probability metrics family. To analyze the convergence rate of reference density

fM(x) to the true density f(x), we first obtain the convergence rates of fM(x) to E[fM(x)], and

E[fM(x)] to f(x). Then following the triangle inequality property of a metric (i.e., d(fM(x), f(x)) ≤

d(fM(x), E[fM(x)])+d(E[fM(x)], f(x))), we can obtain the convergence rate of fM(x) to f(x). Before

describing the main results, we introduce the following commonly used hypothesis on kernel function

K(u), true density function f(x), and bandwidth hM.

(H1): The density function f(x) is bounded and uniformly continuous.

(H2): ∇2f(x) (the second differentiation of f(x)) is piecewise continuous and square integrable.

(H3): The kernel function K is bounded.

(H4): The kernel function K is symmetric, i.e.,
∫

ΩK(u)udu = 0.

(H5): The kernel function K is a square integrable function in the linear span of functions k ≥ 0

such that the subgraph of k, (s, u) : k(s) ≥ u, can be represented as a finite number of Boolean

operations among sets of the form (s, u) : p(s, u) ≥ φ(u), where p is a polynomial on Rn ×R

and φ(u) is an arbitrary real function [19].

(H6): The bandwidth hM satisfies hM → 0 and MhnM →∞.

Lemma 5. [19] Under hypothesis (H1), (H3), (H5) and (H6), we have

lim
M→∞

√
MhnM

2 log(h−nM )
‖fM − E[fM]‖∞ = ‖K‖2‖f‖1/2∞ , a.s.
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Lemma 6. Under hypothesis (H1), (H3), (H5) and (H6), we have

lim
M→∞

√
MhnM

2 log(h−nM )

∫
Ω
|fM(x)− E[fM(x)]|dx ≤ V (Ω)‖K‖2‖f‖1/2∞ , a.s.,

where V (Ω) is the volume of Ω.

Proof. Since
∫

Ω |fM(x)−E[fM(x)]|dx ≤ ‖fM−E[fM]‖∞
∫

Ω dx, Lemma 6 follows from Lemma 5.

Lemma 7. Under hypothesis (H2), (H3), and (H4), we have

∫
Ω
|f(x)− E[fM(x)]|dx ≤ 1

2

√
V (Ω)ν2(K)h2

M‖tr{∇2f(x)}‖2,

where tr{A} denotes the trace of A and ν2(K)I =
∫

Ω uu
TK(u)du (I is an n× n Identity Matrix).

Proof. As indicated in [40], if hypothesis (H2), (H3), and (H4) are satisfied, then

E[fM(x)]− f(x) =
1

2
ν2(K)h2

Mtr{∇2f(x)}+ o(h2
M). (18)

Note here o(h2
M) can be omitted for analysis convergence. According to the Hölder’s inequality [22],

we have

∫
Ω |E[fM(x)]− f(x)| dx ≤

√
V (Ω)

∫
Ω

(E[fM(x)]− f(x))2dx

≤ 1

2

√
V (Ω)ν2(K)h2

M‖tr{∇2f(x)}‖2, (19)

where inequality (19) holds because of (18).

Now we define

C1 = V (Ω)‖K‖2‖f‖1/2∞ ,

C2 =
1

2

√
V (Ω)ν2(K)‖tr{∇2f(x)}‖2.
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According to Lemmas 6 and 7, and the triangle inequality of metrics, we can derive that

∫
Ω |f(x)− fM(x)|dx ≤

∫
Ω
|E[fM(x)]− fM(x)|dx+

∫
Ω
|f(x)− E[fM(x)]|dx

≤ C1

√
2 log(h−nM )

MhnM
+ C2h

2
M. (20)

Note here that different settings of hM lead to different convergence rates. For instance, if we set

hM = M−
1

2n , then

∫
Ω
|f(x)− fM(x)|dx ≤ C1

√
logMM−

1
4 + C2M

− 1
n .

With the convergence rate of
∫

Ω |f(x)− fM(x)|dx as described in (20), we can analyze the conver-

gence rates of reference distribution P0 to the true distribution P for the members in the ζ-structure

probability metrics family.

Proposition 4. Under hypothesis (H1) to (H6), we have

dTV(P,P0) ≤ C1

√
2 log(h−nM )

MhnM
+ C2h

2
M,

dK(P,P0) ≤ C1Ø

2

√
2 log(h−nM )

MhnM
+
C2Ø

2
h2

M,

dBL(P,P0) ≤ C1

√
2 log(h−nM )

MhnM
+ C2h

2
M,

dFM(P,P0) ≤ C1ØΛ

2

√
2 log(h−nM )

MhnM
+
C2ØΛ

2
h2

M,

dU(P,P0) ≤ C1

2

√
2 log(h−nM )

MhnM
+
C2

2
h2

M.

Proof. We first prove that
∫

Ω |f(x)− fM(x)|dx = dTV(P,P0), where f(x) and fM(x) are the density
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functions of P and P0 respectively. First, letting A := {x ∈ Ω : f(x) > fM(x)}, we have

∫
Ω |f(x)− fM(x)|dx =

∫
A
|f(x)− fM(x)|dx+

∫
Ac
|f(x)− fM(x)|dx

=

∫
A

(f(x)− fM(x))dx+

∫
Ac

(fM(x)− f(x))dx

= 2

∫
A

(f(x)− fM(x))dx = 2(P(A)− P0(A)),

where the third equation is due to the fact that
∫

Ω(f(x)− fM(x))dx = 0. That is, we find a set A

such that dTV(P,P0) =
∫

Ω |f(x)− fM(x)|dx.

Second, for any B ∈ σ(Ω), we have

|P(B)− P0(B)| =

∣∣∣∣∫
B
f(x)dx−

∫
B
fM(x)dx

∣∣∣∣
=

∣∣∣∣∫
B∩A

(f(x)− fM(x))dx+

∫
B∩Ac

(f(x)− fM(x))dx

∣∣∣∣
≤ max

{∫
B∩A

(f(x)− fM(x))dx,

∫
B∩Ac

(fM(x)− f(x))dx

}
≤ max

{∫
A

(f(x)− fM(x))dx,

∫
Ac

(fM(x)− f(x))dx

}
=

1

2

∫
|f(x)− fM(x)|dx.

Therefore, we have
∫

Ω |f(x) − fM(x)|dx = dTV(P,P0). Thus the convergence rate of
∫

Ω |f(x) −

fM(x)|dx as shown in (20) can be directly applied to dTV(P,P0). In addition, based on the metrics’

relationships provided in Lemmas 1 to 4, we can derive the convergence rates of other metrics in

the ζ-structure probability metrics family.

For the convergence property of the optimal solution and the optimal objective value of (RA-

SP) to those of SP (i.e., Formulation (1)), we can prove the following theorem in the same way as

that for Theorem 1. The proof is omitted here.

Theorem 2. For the case in which the true distribution is continuous, the optimal solution and

the optimal objective value of (RA-SP) (i.e., Formulation (2)), converge to those of SP (i.e., For-

mulation (1)), respectively.
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4.3 Solution Approach

For the case in which the true probability distribution is continuous, we derive a sampling approxi-

mation approach to solving (RA-SP) (i.e., Formulation (2)) for a fixed value θ (θ can be calculated

following Theorem 4) for any member in the ζ-structure probability metrics family. We denote

f(x) = cTx+ sup
P:dζ(P,P0)≤θ

EP[Q(x, ξ)], (21)

where P0 is the reference probability distribution derived from fM as indicated in (17). To make

the solution framework for (21) more general, we assume that P can be any general distribution

(discrete, continuous, or mixed). In general, this provides a risk-averse solution for the case in

which P is limited to be continuous. Meanwhile, as θ → 0, the problem (21) converges to the

risk-neutral one (i.e., Formulation (1)).

Before describing the main results, we first construct a discrete distribution counterpart for a

general distribution W. Since Ω is bounded, we can find a n-dimensional hypercube H that contains

Ω with equal edge length `. We can partition H into Sn equal-volume hypercubes B1, B2, · · · , BSn

with edge length of each hypercube equal to `/S. Let v =
∫
Bi
dx be the volume of each hypercube,

then we have v = (`/S)n, and the volume of H: V (H) = vSn. In addition, we can define

ρ(x, y) = ‖x− y‖2. Then for any Bi and for any x, y ∈ Bi, following triangular inequality, we have

ρ(x, y) ≤
√
n`/S. (22)

Now we construct a discrete distribution WS corresponding to the continuous distribution W in

the following way. For each hypercube Bi, select a sample ξi ∈ Bi (for instance, the center of Bi),

and let WS be the discrete distribution on {ξ1, ξ2, · · · , ξSn} with the probability pi on ξi equal to∫
Bi
dW, for ∀i = 1, 2, · · · , Sn.

We now first analyze the convergence rate of WS to W under Kantorovich metric.

Lemma 8. For a general dimension n ≥ 1, we have

dK(WS ,W) ≤
√
n`/S.
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Proof. According to the definition of Kantorovich metric, we have dK(WS ,W) = suph∈H |
∫
H hdWS−∫

H hdW|, with |h(x)− h(y)|/ρ(x, y) ≤ 1,∀x, y. Then for each h ∈ H, we have

∣∣∣∣∫
H
hdWS −

∫
H
hdW

∣∣∣∣ =

∣∣∣∣∣∣
Sd∑
i=1

h(ξi)pi −
Sd∑
i=1

∫
Bi

h(ξ)dW

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Sd∑
i=1

∫
Bi

(h(ξi)− h(ξ))dW

∣∣∣∣∣∣ (23)

≤
Sd∑
i=1

∫
Bi

|h(ξi)− h(ξ)|dW

≤
Sd∑
i=1

∫
Bi

ρ(ξi, ξ)dW (24)

≤ sup
x,y∈Bi

ρ(x, y)
Sd∑
i=1

∫
Bi

dW

= sup
x,y∈Bi

ρ(x, y)

≤
√
n`/S, (25)

where (23) follows the definition of pi (i.e., pi =
∫
Bi
dW), (24) follows the property |h(x) −

h(y)|/ρ(x, y) ≤ 1, ∀x, y for the Kantorovich metric, and (25) follows inequality (22). Therefore,

we have dK(WS ,W) = suph∈H |
∫
H hdWS −

∫
H hdW| ≤

√
n`/S.

For the Bounded Lipschetz and Fortet-Mourier metrics in the ζ-structure probability metrics

family, the convergence rates, which can be derived from Lemmas 2 and 4, are shown in the following

corollary.

Corollary 2. For a general dimension n ≥ 1, we have

dBL(WS ,W) ≤
√
n`/S,

dFM(WS ,W) ≤ Λ
√
n`/S.

For the Total Variation and Uniform metrics, the supporting space Ω of distribution W (which

is assumed to be continuous in this section) is not a finite set. Accordingly, Lemmas 1 and 3

cannot be applied to derive the corresponding convergence rates. In the following, we study the

convergence properties separately.
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For the Total Variation metric, since WS has a finite support, we define the corresponding

sample space ΩS = {ξ1, ξ2, · · · , ξSn}. Then, based on the definition of Total Variation metric, we

have

dTV(WS ,W) = 2 sup
B∈σ(Ω)

|WS(B)−W(B)|

≥ 2|WS(ΩS)−W(ΩS)|

= 2,

where the last inequality holds since WS(ΩS) = 1 and W(ΩS) = 0 if W is a continuous distribution.

Thus, we do not have the convergence property for the Total Variation metric.

For the Uniform metric, we have the following convergence results based on the assumption

that the density function f of distribution W is bounded.

Lemma 9. For a general dimension n ≥ 1, we have

dU(WS ,W) ≤ Γ(`/S)n,

where Γ is the bound of density function f , i.e., Γ = maxt∈Ω f(t).

Proof. For analysis convenience, we assume for each small hypercube, the smallest value (bottom

left) of this hypercube is selected as our sample. Then, for any t ∈ Ω, we can find the corresponding

hypercube (defined as B(t)), the sample ξ(t), and the largest value (top right) ξ̄(t) in this hypercube

B(t). Based on the approach described above on selecting the samples, we have ξ̄(t) > t ≥ ξ(t)

(note here that if t = ξ̄(t), then t belongs to the hypercube in which the sample is ξ̄(t)). According

to the definition of Uniform metric, we have

dU(WS ,W) = sup
t
|WS(x ≤ t)−W(x ≤ t)| = sup

t

∣∣∣∣∣
∫

[−∞,t]
dWS −

∫
[−∞,t]

dW

∣∣∣∣∣
= sup

t

∣∣∣∣∣∣
 ∑
i:ξi<ξ(t)

∫
Bi

dWS +

∫
[ξ(t),t]

dWS

−
 ∑
i:ξi<ξ(t)

∫
Bi

dW +

∫
[ξ(t),t]

dW

∣∣∣∣∣∣
= sup

t

∣∣∣∣∣∣
 ∑
i:ξi<ξ(t)

pi +

∫
[ξ(t),t]

dWS

−
 ∑
i:ξi<ξ(t)

pi +

∫
[ξ(t),t]

dW

∣∣∣∣∣∣
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= sup
t

∣∣∣∣∣
∫

[ξ(t),t]
dWS −

∫
[ξ(t),t]

dW

∣∣∣∣∣ = sup
t

∣∣∣∣∣pB(t) −
∫

[ξ(t),t]
dW

∣∣∣∣∣
= sup

t

∣∣∣∣∣
∫

[ξ(t),ξ̄(t))
dW−

∫
[ξ(t),t]

dW

∣∣∣∣∣ = sup
t

∫
(t,ξ̄(t))

dW

= sup
t

∫
t<x<ξ̄(t)

f(x)dx ≤ Γ

∫
t<x<ξ̄(t)

dx = Γ(`/S)n.

Therefore, the conclusion holds.

Now we provide the approximation tool to address (RA-SP) (i.e., Formulation (2)) by deriving

its upper and lower bounds. For analysis convenience, we write down the following two problems:

H+
S (x, ε) = cTx+ sup

FS :dζ(FS ,F
0
S)≤θ+2ε

EFS [Q(x, ξ)] + ∆S , (26)

H−S (x, ε) = cTx+ sup
FS :dζ(FS ,F

0
S)≤θ−ε

EFS [Q(x, ξ)], (27)

where

∆S = max
ξ∈Ω
‖∇Q(x, ξ)‖

√
n`/S, (28)

F 0
S is the discrete distribution counterpart of P0 following the above construction process, and FS

is any discrete distribution of ξ1, ξ2, · · · , ξSd . Note here ε values in (27) can be decided based on

different metrics. For instance, for the Kantorovich metric case, we have

ε =
√
n`/S. (29)

First, we consider deriving upper and lower bounds for (21) when the first-stage solution x is

fixed (say x = x̄ in the above (26) and (27)). We have the following proposition.

Proposition 5. For any given first-stage decision x̄, H−S (x̄, ε) as defined in (27) is a lower bound

of f(x̄) and H+
S (x̄, ε) as defined in (26) is an upper bound of f(x̄) as defined in (21).

Proof. For the lower bound part, we first assume that F ∗S is the worst-case distribution of Problem

(27). Then F ∗S should satisfy the constraint dζ(F
∗
S , F

0
S) ≤ θ − ε. Also, based on Lemmas 1 to 4

and Lemma 8, we have dζ(F
0
S ,P0) ≤ ε following (29) and (25). Since dζ is a metric, it satisfies

the triangle inequality, i.e., dζ(F
∗
S ,P0) ≤ dζ(F

∗
S , F

0
S) + dζ(F

0
S ,P0). Thus we have dζ(F

∗
S ,P0) ≤ θ.
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That is, F ∗S belongs to the set {P : dζ(P,P0) ≤ θ} as described in (21), which immediately leads to

EF ∗S [Q(x̄, ξ)] ≤ supP:dζ(P,P0)≤θ EP[Q(x̄, ξ)]. Therefore,

H−S (x̄, ε)− f(x̄) = (cT x̄+ EF ∗S [Q(x̄, ξ)])− (cT x̄+ sup
P:dζ(P,P0)≤θ

EP[Q(x̄, ξ)])

= EF ∗S [Q(x̄, ξ)]− sup
P:dζ(P,P0)≤θ

EP[Q(x̄, ξ)] ≤ 0.

For the upper bound part, we first prove Ĥ+
S (x̄, ε) defined below is an upper bound of f(x̄) for any

given x̄:

Ĥ+
S (x̄, ε) = cT x̄+ sup

Q:dζ(Q,F 0
S)≤θ+ε

EQ[Q(x̄, ξ)], (30)

where Q is a general probability distribution. Now assume Q∗ is the worst-case distribution of

Problem (21). Then Q∗ should satisfy the constraint dζ(Q∗,P0) ≤ θ. Also, from Lemma 8, we

have dζ(F
0
S ,P0) ≤ ε. According to the triangle inequality, we have dζ(Q∗, F 0

S) ≤ dζ(Q∗,P0) +

dζ(P0, F
0
S) ≤ θ + ε. That is, Q∗ belongs to the set {Q : dζ(Q, F 0

S) ≤ θ + ε}, which immediately

yields EQ∗ [Q(x̄, ξ)] ≤ supQ:dζ(Q,F 0
S)≤θ+εEQ[Q(x̄, ξ)]. Therefore,

f(x̄)− Ĥ+
S (x̄, ε) = (cT x̄+ EQ∗ [Q(x̄, ξ)])− (cT x̄+ sup

Q:dζ(Q,F 0
S)≤θ+ε

EQ[Q(x̄, ξ)])

= EQ∗ [Q(x̄, ξ)]− sup
Q:dζ(Q,F 0

S)≤θ+ε
EQ[Q(x̄, ξ)] ≤ 0. (31)

Now, we prove that H+
S (x̄, ε) as defined in (26) is an upper bound of Ĥ+

S (x̄, ε) as defined in (30)

for any given x̄. Let Q∗ be the worst-case distribution of Ĥ+
S (x̄, ε). Then

Ĥ+
S (x̄, ε) = cT x̄+ EQ∗ [Q(x̄, ξ)], (32)

and

dζ(Q∗, F 0
S) ≤ θ + ε. (33)

Next, let F ∗S be the discrete distribution counterpart of Q∗ following our construction. Then
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according to Lemma 8, we have

dζ(Q∗, F ∗S) ≤ ε. (34)

Therefore, with inequalities (33) and (34), we have

dζ(F
∗
S , F

0
S) ≤ dζ(F ∗S ,Q∗) + dζ(Q∗, F 0

S) ≤ θ + 2ε.

Hence, F ∗S belongs to the set {FS : dζ(FS , F
0
S) ≤ θ + 2ε}, which leads to

EF ∗S [Q(x̄, ξ)] ≤ sup
FS :dζ(FS ,F

0
S)≤θ+2ε

EFS [Q(x̄, ξ)] (35)

for any given x̄. Now we are ready to prove that H+
S (x̄, ε) is an upper bound of Ĥ+

S (x̄, ε) as follows:

H+
S (x̄, ε)− Ĥ+

S (x̄, ε) = sup
FS :dζ(FS ,F

0
S)≤θ+2ε

EFS [Q(x̄, ξ)] + ∆S − EQ∗ [Q(x̄, ξ)]

≥ EF ∗S [Q(x̄, ξ)]− EQ∗ [Q(x̄, ξ)] + ∆S (36)

=
Sn∑
i=1

∫
Bi

[Q(x̄, ξi)−Q(x̄, ξ)]dQ∗ + ∆S , (37)

where (36) holds because of (35). According to the Mean Value Theorem, for every hypercube

Bi, there exists a ξ̄i ∈ [ξ, ξi], such that Q(x̄, ξi) − Q(x̄, ξ) = ∇Q(x̄, ξ̄i)(ξi − ξ), because Q(x̄, ξ) is

continuous in ξ. Hence,

∣∣∣∑Sn

i=1

∫
Bi

[Q(x̄, ξi)−Q(x̄, ξ)]dQ∗
∣∣∣ ≤ Sn∑

i=1

∫
Bi

|Q(x̄, ξi)−Q(x̄, ξ)|dQ∗

≤
Sn∑
i=1

‖∇Q(x̄, ξ̄i)‖
∫
Bi

‖ξi − ξ‖dQ∗

≤ max
ξ∈Ω
‖∇Q(x̄, ξ)‖max

ξ∈Bi
ρ(ξ, ξi)

Sn∑
i=1

∫
Bi

dQ∗

≤ max
ξ∈Ω
‖∇Q(x̄, ξ)‖

√
n`/S,
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where the last inequality follows from (22). Then

Sn∑
i=1

∫
Bi

[Q(x̄, ξi)−Q(x̄, ξ)]dQ∗ ≥ −max
ξ∈Ω
‖∇Q(x̄, ξ)‖

√
n`/S

and accordingly,

(37) ≥ ∆S −max
ξ∈Ω
‖∇Q(x̄, ξ)‖

√
n`/S ≥ 0,

where the last inequality follows (28) and this implies H+
S (x̄, ε) − Ĥ+

S (x̄, ε) ≥ 0. Since Ĥ+
S (x̄, ε) is

an upper bound of f(x̄) following (31), the conclusion holds.

Now we are ready to analyze the upper and lower bounds of problem (RA-SP) and their con-

vergence properties. Accordingly, we let

v+
S = min

x∈X
H+
S (x, ε), (38)

v−S = min
x∈X

H−S (x, ε), (39)

and v∗ represents the optimal objective value of (RA-SP) (i.e., Formulation (2)). The following

conclusion holds.

Theorem 3. The optimal objective value of (RA-SP) (i.e., v∗) is bounded above and below by v+
S

and v−S as described in (38) and (39). That is,

v−S ≤ v
∗ ≤ v+

S . (40)

Proof. We first verify the lower bound part. Denote x∗ and x−S be the optimal solutions to problem

(RA-SP) and problem (39), respectively. Then

v−S − v
∗ = H−S (x−S , ε)− f(x∗)

≤ H−S (x∗, ε)− f(x∗) (41)

≤ 0, (42)
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where inequality (41) holds since x−S is an optimal solution to problem (39) and x∗ is a feasible

solution to problem (39), and inequality (42) follows Proposition 5. For the upper bound part,

denote x∗ and x+
S be the optimal solutions to problem (RA-SP) and problem (38), respectively.

Then

v+
S − v

∗ = H+
S (x+

S , ε)− f(x∗)

≥ H+
S (x+

S , ε)− f(x+
S ) (43)

≥ 0, (44)

where inequality (43) holds since x∗ is the optimal solution to problem (RA-SP) and x+
S is a feasible

solution to problem (RA-SP), and inequality (44) follows Proposition 5.

Now we analyze the convergence property of the upper and lower bounds as the number of

hypercubes Sn goes to infinity. We have the following conclusion.

Theorem 4. The upper bound v+
S and lower bound v−S defined in (38) and (39) of (RA-SP)

converge, i.e., limS→∞ v
−
S = limS→∞ v

+
S = v∗, and so do the corresponding optimal solutions.

Proof. For the first statement, since we have v−S ≤ v∗ ≤ v
+
S according to Theorem 3, we only need

to prove limS→∞ v
−
S = limS→∞ v

+
S . To prove this, first, based on (26) to (28), we have ε → 0 and

∆S → 0 as S →∞. Thus, for any given first-stage solution x̄, we have

lim
S→∞

H−S (x̄, ε) = cT x̄+ sup
F :dζ(F,F 0

∞)≤θ
EF [Q(x, ξ)] = lim

S→∞
H+
S (x, ε). (45)

Next, we prove the claim limS→∞ v
−
S = limS→∞ v

+
S . Since limS→∞ v

−
S ≤ limS→∞ v

+
S following (40),

if the equation limS→∞ v
−
S = limS→∞ v

+
S does not hold, we have

lim
S→∞

v−S < lim
S→∞

v+
S . (46)

Now we prove the claim by a contradiction method. Let x+ and x− be the corresponding

optimal solutions to limS→∞ v
+
S and limS→∞ v

−
S , respectively. Then, accordingly, we have

lim
S→∞

H+
S (x+, ε) = lim

S→∞
v+
S > lim

S→∞
v−S = lim

S→∞
H−S (x−, ε) = lim

S→∞
H+
S (x−, ε), (47)
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where the first equation follows (38), the inequality follows (46), the second equation follows (39),

and the last equation follows (45). Note here (47) indicates that x− is a better solution for

limS→∞ v
+
S , as compared to x+, which violates that x+ is the corresponding optimal solution

to limS→∞ v
+
S . Thus, the original conclusion holds, i.e., limS→∞ v

−
S = limS→∞ v

+
S . For the second

statement, since X is compact and accordingly the optimal solutions of limS→∞ v
+
S and limS→∞ v

−
S

converge. Because limS→∞ v
−
S = limS→∞ v

+
S = v∗, these solutions must converge to some solution

x∗, which is also an optimal solution of (RA-SP) (i.e., Formulation (2)).

Now we can derive an approximation formulation of problem (RA-SP) as follows:

vS = min
x∈X

{
H(x) := cTx+ sup

FS :dζ(FS ,F
0
S)≤θ

EFS [Q(x, ξ)]

}
. (48)

Since H+
S (x, ε) ≥ H(x) ≥ H−S (x, ε), we have v+

S ≥ vS ≥ v−S . Therefore, vS also converges to the

objective of (RA-SP) (i.e., Formulation (2)).

Next, we conclude the algorithm to solve the case in which the true distribution is continuous

in Algorithm 2.

Algorithm 2: Algorithm for the continuous case

Input: Historical data ξ1, ξ2, · · · , ξM i.i.d. drawn from the true distribution.
Output: The objective value of the risk-averse problem (RA-SP).

1 Obtain the kernel density function fM(x) as shown in (17) and θ based on the historical data.
2 Set Gap = 1000, S = 0, ∆S = 100.
3 While Gap > σ, do
4 1) S = S + ∆S.
5 2) Construct the discrete distribution counterpart (F 0

S) of P0 based on fM(x).
6 3) Obtain ε based on Lemma 8.
7 4) Obtain the upper bound by solving (38).
8 5) Obtain the lower bound by solving (39).
9 6) Obtain the optimality gap Gap between the lower and upper bounds.

10 Output the solution.

Remark 1. Note here that for the case in which the true distribution is discrete but the supporting

space Ω is infinite, we can employ the same algorithm here as the continuous case.
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5 Numerical Experiments

In this section, we conduct computational experiments to show the effectiveness of the proposed ζ-

structure probability metrics. We test the performance for both discrete and continuous distribution

cases through two instances: Newsvendor problem and facility location problem.

5.1 Newsvendor Problem

For the newsvendor problem, we consider the case in which a news vendor places an order y of

newspapers one day ahead at a unit cost of c1, and on the second day, she observes the real demand

d and places a supplemental order x at a unit cost of c2. The unit sale price is p, and there is

no salvage value for unsold newspapers. Without loss of generality, we can assume c1 < c2 < p.

Otherwise, if c1 ≥ c2, then the news vendor can put all purchase orders on the second day after

demand is realized, and if c2 ≥ p, then the news vendor will not put any order on the second day to

avoid loss of money. Accordingly, the data-driven risk-averse stochastic newsvendor problem can

be formulated as follows:

max
y≥0
−c1y + min

P:dζ(P,P0)≤θ
EP max

x≥0
[pmin{x+ y, d(ξ)} − c2x], (49)

where ζ can be any metric in the ζ-structure probability metrics family, and θ can be calculated

based on the convergence rates derived in Subsection 3.2 if the true distribution is discrete and

the convergence rates derived in Subsection 4.2 if the true distribution is continuous. To illustrate

the performance of our proposed approach, we set c1 = 3, c2 = 4, and p = 5. In this setting, we

assume that the demand follows a discrete distribution with two scenarios: 10 and 20, each with

probabilities 0.4 and 0.6, respectively, and use this distribution to generate our historical data sets

for testing. We study the effects of the number of observed historical data, by setting the confidence

level to be 99% and varying the number of historical data from 10 to 10, 000.

The results are reported in Figure 2. From the figure, we can observe that, no matter what

kind of metrics we use, as the size of historical data increases, the objective value of the risk-averse

stochastic newsvendor problem tends to increase. This result conforms to the intuition, because

the value of θ decreases as the number of historical data samples increases. Therefore, accordingly,
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Figure 2: Effects of historical data

the risk-averse stochastic newsvendor problem becomes less conservative. We can also observe

that, when the size of historical data samples exceeds 2, 000, the gaps between the risk-averse

problem (RA-SP) and the risk-neutral problem (SP) are very small (less than 0.2) already under

the Wasserstein and Fortet-Mourier metrics. Furthermore, when the size of historical data samples

exceeds 5, 000, the gaps between the risk-averse and risk-neutral ones are small under all metrics.

In addition, we explore the effects of confidence level on the objective value of the risk-averse

stochastic newsvendor problem. We set the number of historical data samples to be 5, 000, and test

five different confidence levels: 0.7, 0.8, 0.9, 0.95, and 0.99. The results are reported in Figure 3.

From the figure, we can observe that as the confidence level increases, the gaps between the

risk-averse and risk-neutral problems increase. This is due to the fact that, as the confidence level

increases, the value of θ increases. Thus, the problem becomes more conservative and the true

probability distribution is more likely to be in the confidence set D.
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Figure 3: Effects of confidence level

5.2 Facility Location Problem

For the facility location problem, we consider the case in which the demand is assumed continuous,

while the actual distribution is unknown. For the problem, the decisions include deciding what

facilities, among candidate locations i = 1, · · · ,M , to open, to satisfy a set of demand sites j =

1, · · · , N , whose demands are independently distributed. Each facility i associates with a fixed cost

Fi and a capacity Ci if it is open. Meanwhile, there is a deterministic unit transportation cost

Tij for shipping products from each facility i to each demand site j. In our problem setting, in

the first stage, we decide which facilities to open (e.g., using the binary variable “yi” to indicate

if facility i is open). In the second stage, after realizing the demand dj at site j, we decide the

amount of products to be shipped from facility i to demand site j, denoted as xij . Accordingly, the
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data-driven risk-averse two-stage stochastic facility location problem can be formulated as follows:

miny

M∑
i=1

Fiyi + max
P∈D

EP

 M∑
i=1

N∑
j=1

Tijxij(ξ)


s.t.

N∑
j=1

xij ≤ Ciyi, i = 1, · · · ,M, (50)

M∑
i=1

xij = dj(ξ), j = 1, · · · , N,

yi ∈ {0, 1}, xij ≥ 0, i = 1, · · · ,M, j = 1, · · · , N.

In our experiment setting, we assume there are 10 facility locations and 10 demand sites. For

each location i, the capacity is 15 + i, and the fixed cost is 100 + i. Meanwhile, the unit shipping

cost from location i to demand site j is 5 + 0.008i. We test the cases in which the true distribu-

tions are Uniform distribution, Normal distribution, Gamma distribution, and Weibull distribution,

respectively. That is, we generate historical data sets sampled from these distributions.

Similar to the newsvendor problem described in Subsection 5.1, we first study the effects of

historical data. We report the relationships between the objective values of the risk-averse stochastic

facility location problems and the numbers of historical data (×106), and the results are shown in

Figure 4. Corresponding to each risk-averse stochastic facility location problem (50) for a given

set of historical data, we compute the objective value of the risk-averse stochastic facility location

problem (50) following the approximation formulation (48). Meanwhile, to obtain F 0
S , we set the

number of samples taken from the reference continuous distribution based on (17) to be 100.

From Figure 4 we can observe that, as the size of historical data increases, the objective values

tend to decrease. This is because as the number of historical data increases, the value of θ decreases

and the problem becomes less conservative.

Finally, we set the size of historical data to be 5000 to evaluate the performance of the algorithm

for the inner loop problem. For this experiment, we take Bounded Lipschitz as an example. We

test the effects of the number of samples for the proposed sampling approximation approach. We

obtain the upper and lower bounds, and the estimated values corresponding to different sample

sizes in solving the inner loop problem, respectively. The computational results are shown in Figure

5.
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Figure 4: Effects of historical data

From Figure 5 we can observe that, no matter what the true distribution is, as the number of

samples increases, the gap between the upper bound and the lower bound tends to decrease.

6 Conclusion

In this paper, we studied a new family of probability metrics, ζ-structure probability metrics, to

construct the confidence set of ambiguous distributions, by learning from the historical data. To

the best of our knowledge, this research provided one of the the first studies on exploring this

whole family of probability metrics to solve risk-averse stochastic programs considering general

distributions (both discrete and continuous cases). Based on the constructed confidence set, we
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Figure 5: Effects of inner loop samples

further developed a framework to solve the risk-averse two-stage stochastic program. In particular,

we reformulated the risk-averse problem as a traditional robust optimization problem for the discrete

case. For the continuous case, we proposed a sampling approach to deriving the upper and lower

bounds for the optimal objective value of the risk-averse problem corresponding to a given set of

historical data. In addition, these bounds are proved to converge to the optimal objective value

as the sample size increases to infinity. We also proved that under ζ-structure probability metrics,

the risk-averse problem converges to the risk-neutral one uniformly as the size of historical data

increases to infinity. The final experimental results of the newsvendor and facility location problems

verified the effectiveness of the proposed approach and numerically showed the value of data.
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