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CHAPTER I 

 
INTRODUCTION 

 
The continued improvements in device performance and the demand for ever 

increasing bandwidth, will soon require the propagation of picosecond (ps) or subps 

pulses on micron or submicron sized wiring. This situation has forced the consideration 

of guided-wave propagation effects, for the interconnect between electronic chips and 

even down to the single chip level. Phenomena previously considered only by the 

microwave community at GHz frequencies are now becoming manifest in the ps time-

scale at THz frequencies. An alternative to lithographically defined, high-bandwidth 

transmission lines on dielectric substrates is the guided-wave propagation of THz 

radiation, and the associated coupling between the guided and freely propagating THz 

beams. Recently, efficient broadband coupling of freely propagating ps pulses into 

hollow circular and rectangular metal waveguides [1,2], and single-crystal sapphire fibers 

[3], was demonstrated. Single-mode coupling and propagation were achieved for all these 

waveguides, even though for the metal waveguides the spectral bandwidth overlapped as 

many as 25 additional modes. Such waveguide propagation has already demonstrated 

much larger bandwidths with approximately 1/10th of the loss compared to that of 

lithographically defined coplanar transmission lines [4]. Although these waveguides are 

quite useful for narrowband or THz-TDS (time-domain-spectroscopy) applications, they 

all have very high group velocity dispersion (GVD), which render them incapable of 

subps pulse propagation. For the metal waveguides the excessive broadening of the 

pulses is caused by the extreme GVD near the cutoff frequency. 
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As stated in Reference [5], by specifically configuring a dielectric waveguide into 

the form of a thin slab (film) having a large aspect ratio, that is surrounded by loss-less 

dry air or vacuum, it is possible to reduce the attenuation constant by as much as 100 

times below that of a similar circular dielectric rod with an identical cross-sectional area. 

The fact that the loss can be made so much smaller than that of an equivalent circular rod 

is primarily due to the distribution of the guided energy in the low-loss outer region. The 

distinguishing feature being its expanding surface area, which enables the guided mode to 

attach to it, quite unlike the case of the circular rod, which possesses minimal surface 

area. This simple waveguide structure can be fabricated using known low-loss dielectric 

materials, and can be made flexible to negotiate corners. It has been shown that this 

waveguide possesses rather stable behavior to dimensional variations, up to 0.1λo in 

surface roughness, where λo is the wavelength in free-space [6]. This dielectric slab 

waveguide also has good quasi-optic coupling properties, and is amenable to 

photolithographic techniques due to the planar geometry, thereby allowing active and 

passive devices to be integrated with the waveguide. In contrast to the previous work [1-

3], the GVD can be controlled by the thickness of the slab, and the GVD can have a value 

opposite in sign to that of metal-tube or fiber waveguides, thereby allowing dispersion 

compensation or mutual pulse compression. 

The first part of this dissertation presents an experimental study with a theoretical 

explanation, of single-mode propagation and quasi-optic coupling of ps THz pulses in 

dielectric slab waveguides [7]. Dispersive, low-loss propagation was observed within the 

bandwidth from 0.2 to 3.5 THz, for two slab waveguides made of high-density 

polyethylene (HDPE), having nominal dimensions of 150 µm (thick) by 10 mm (long), 
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and 120 µm (thick) by 20 mm (long). The high GVD of the waveguides causes extensive 

pulse reshaping and broadening, resulting in positively chirped output pulses. The 

experiment and calculations based on the well-known 2-D waveguide model show that 

the linearly polarized (perpendicular to the plane of the slab) incoming THz beam 

couples significantly only to the dominant TM0 mode resulting in predominantly single-

mode propagation, even though the wideband input spectrum extends beyond the cutoff 

frequencies of several higher-order modes.  

As demonstrated by this study, due to the prospect of achieving single-mode 

propagation with ultra low losses, the dielectric slab waveguide looks very promising for 

monochromatic or narrowband applications, and also for Guided-Wave THz-TDS 

discussed later in the dissertation. But unfortunately, the associated GVD hinders any 

possibility of undistorted subps pulse propagation, essential to high-speed data circuitry 

having data rates in the order of Tb/s. 

 The excessive pulse broadening due to GVD would not occur for the TEM mode 

of a two-wire coplanar line, a coaxial line, or a parallel-plate metal waveguide, that does 

not have a cutoff frequency. The signal velocities of such a TEM mode are determined 

solely by the surrounding dielectric medium. Quasi-optic coupling techniques would not 

be effective for the complex field pattern of the TEM mode of the two-wire coplanar line 

or the coaxial line. However, efficient coupling should be possible for the simple field 

pattern of the TEM mode of the parallel-plate metal waveguide. 

The second part of this dissertation presents an experimental study with a 

theoretical explanation, of the parallel-plate waveguide, demonstrating efficient quasi-

optic coupling of freely propagating subps pulses, and the subsequent low-loss, single 
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TEM mode propagation exhibiting virtually zero GVD [8]. Undistorted, low-loss 

propagation of input 0.3 ps FWHM pulses was observed within the bandwidth from 

0.2 to 4 THz, for a parallel-plate copper waveguide having a plate separation of 108 µm 

and a propagation length of 24.4 mm. Consequently, for what is believed to be the first 

time, the ideal THz interconnect [4] that is capable of propagating subps pulses with 

minimal loss and no distortion has been realized. As an added feature of the parallel-plate 

waveguide, it is shown (theoretically) that the propagation loss could be reduced further, 

by using the opposite polarization and exciting the TE1 mode, but at the expense of 

considerable GVD. 

The third part of this dissertation is a supplement to the second part, where the 

concept of the parallel-plate waveguide has been extended to a very long, physically 

flexible, practicable THz interconnect having no GVD [9]. This study demonstrates the 

quasi-optic coupling and the subsequent low-loss, single TEM mode propagation of 

subps pulses in a parallel-plate copper waveguide, a quarter of a meter in length, that is 

bent in a plane normal to the plates, with the smallest bending radius being equal to 

11.5 mm. Single TEM mode propagation is preserved as long as the axial changes in the 

waveguide (bends and twists) are spatially slow compared to the propagating 

wavelengths [10]. It is shown that the observed loss is mainly due to the finite 

conductivity of copper with some additional loss due to beam spreading in the unguided 

dimension. The observed pulse broadening is due to the frequency dependent loss since 

the GVD is negligible. 

The last part of this dissertation is a purely theoretical study that focuses on 

deriving the far-infrared absorption spectra of very thin dielectric films using guided-
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wave techniques, substantiating a powerful THz technology, Guided-Wave THz-TDS. 

The dielectric film, which is coated on the surface of the dielectric slab waveguide or on 

the inner surface of the metal conductors of the parallel-plate waveguide, can be in the 

form of an adsorbed layer or a surface reaction. It is shown that for a propagation length 

of 2 cm, the sensitivity of a 50 µm thick dielectric slab waveguide that is made of high-

resistivity silicon, can be as high as 400, when measuring the absorption of a film having 

an index of 1.5. Here, the sensitivity of the measurement is defined as the ratio of 

absorption×length product associated with the absorbing film on the waveguide surface 

to that of a single-pass transmission measurement at normal incidence of the free-

standing film. For the same propagation length and film index, the sensitivity of a 

parallel-plate metal waveguide with a plate separation of 100 µm is shown to be 59. 

 

 

 

 

 

 

 

 

 

 

 

 



 

CHAPTER II 

 
BROADBAND THz SETUP 

 
The experimental setup shown in Figure 2-1 consists of an optoelectronic 

transmitter and receiver, along with THz beam shaping and steering optics. As described 

in References [11] and [12], subps THz pulses are generated using 40 femtosecond 

optical pulses having a nominal wavelength of 820 nm, with a repetition rate of 

100 MHz, from a KLM Ti:Sapphire laser. The optical pulses are focused onto the inner 

edge of the positive polarity line of a coplanar stripline on a semi-insulating GaAs wafer, 

which is biased at 70 V. Each pulse creates an electron-hole plasma, and the subsequent 

acceleration 
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    Figure 2-1.  Optoelectronic THz-TDS system incorporating quasi-optic coupling to
the waveguide. The generated THz pulse is linearly polarized in the plane
of the paper and along the y-direction at the waveguide entrance face. 
 6
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acceleration of these carriers by the bias field, generates a near single-cycle 

electromagnetic pulse of THz radiation, which would be linearly polarized along the 

direction of the bias field. In the standard THz-TDS setup, the sample under investigation 

is placed at the beam waist between the two off-axis parabolic mirrors, which are in the 

confocal configuration. The confocal symmetry gives a frequency-independent, unity 

power coupling efficiency for the optical system [13]. For the waveguide experiment 

presented here, a lens-waveguide-lens system is placed in this central position. 

 The transmitting antenna is at the focus of a hyper-hemispherical lens, made of 

high-resistivity silicon, which collimates the frequency-independent far-field pattern into 

a Gaussian beam with a 1/e-amplitude waist diameter of 6 mm (w1). This waist is in the 

focal plane of the parabolic mirror, which focuses the beam to a second waist (w2), with 

beam diameters proportional to the wavelength (7.6 mm @ 1 THz). The combination of 

the parabolic mirror, silicon lens, and antenna chip constitutes the transmitter, the source 

of a highly directional, freely propagating beam of subps pulses. In the standard THz-

TDS system, an identical optical system is on the receiver side, which is in fact the exact 

mirror image about the waist position w2. For the underlying waveguide experiment, an 

additional silicon lens, but with a plano-cylindrical geometry, is placed at waist w2, 

which focuses the beam further along one dimension. This gives rise to an approximately 

Gaussian beam having an elliptic cross-section whose frequency-dependent major axis is 

oriented parallel to the planar waveguide, and whose frequency-independent minor axis 

has a 1/e-amplitude size of ≈ 200 µm at the focus (w3). This third focal plane is in the 

vicinity of the waveguide entrance face. A similar lens arrangement is used at the exit 

face as well. The first plano-cylindrical lens tightly couples the electromagnetic energy 
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into the planar waveguide, and after propagation through the guide, the second lens 

tightly couples the energy out. In the absence of the waveguide, with the two cylindrical 

lenses moved closer such that their foci overlap, the system is again confocal, resulting in 

a frequency-independent coupling efficiency of unity. Even though not revealed in 

Figure 2-1, the beam at waist position w2 is effectively truncated to a diameter of 12 mm, 

by the holder of the cylindrical lens, which acts as a circular aperture. 

 At the receiver, the THz beam is focused onto a polarization sensitive, 10 µm 

dipole antenna on an ion-implanted silicon-on-sapphire (SOS) wafer, which is 

photoconductively switched by a second optical beam of 40 fs pulses from the same 

Ti:Sapphire laser. This generates a dc current that is proportional to the instantaneous 

value of the electric field of the propagated pulse. By measuring this current while 

scanning the relative time delay between the detected THz pulse and the gating optical 

pulse, the complete time-dependence of the THz pulse can be obtained, which includes 

both amplitude and phase information. 

 In order to eliminate effects of water vapor (there are significant water vapor 

absorption lines in the far-infrared region of the spectrum), the whole setup was enclosed 

in an air-tight enclosure and purged with dry air during data collection. 

 

 

 

 

 



 

 

CHAPTER III 

 
DIELECTRIC SLAB WAVEGUIDE 

 
Waveguide Specimens 
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     Figure 3-1
.  The lens-waveguide-lens system. The thickness of the
dielectric slab has been exaggerated for clarity. 
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ielectric slab waveguides that were fabricated in the laboratory, 

ilable sheets of HDPE having a refractive index of 1.5, were used 

 two waveguides had nominal dimensions of 150 µm (thick) by 

 µm (thick) by 20 mm (long). The measured thickness of each 

out ±10 µm along the plane of the slab. For both waveguides, the 

tion (x) was 20 mm. 
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Experimental Results 

 
 The reference pulse is obtained by removing the waveguide and moving the two 

cylindrical lenses closer, to their confocal configuration. Experimentally, this is done by 

maximizing the peak of the detected signal while bringing the two lenses closer in a step-

by-step process, with precise alignment control. This reference pulse is effectively the 

input to the waveguide, except for a distinct phase delay corresponding to the propagation 

length of the guide. This pulse which has a positive peak of approximately 0.6 nA is 

shown in Figure 3-2 (a), with its amplitude spectrum in Figure 3-2 (b), that clearly shows 

a useful input spectrum extending from 0.1 THz to about 3.5 THz. The small oscillations 

seen after the main pulse in Figure 3-2 (a) are due to reflections within the small air-gap 

between the confocal lenses. 

 The measured propagated pulses through the 1 cm and 2 cm waveguides are 

shown in Figures 3-3 and 3-4, respectively, with their corresponding amplitude spectra. 

The incident THz pulse which has a full duration of about 1 ps, has been stretched to 

about 20 ps by the short waveguide and to about 40 ps by the long one. In addition to the 

larger spreading, the output of the long waveguide has a lot more oscillations than the 

output of the short one. And the leading portions of these two output pulses exhibit a 

positive chirp, where the high frequencies arrive later in time. This feature is completely 

opposite to what has been observed previously in other studies done on THz waveguides 

[1-3]. The trailing portions exhibit a slight interference effect. The stretching and 

consequent chirping of the propagated pulses compared to the incident pulse is attributed 

to the strong GVD of the waveguide. 

 



 

 11

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 2 4 6 8 10 12 14 16

-400

-200

0

200

400

600

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Time (ps)

Av
er

ag
e 

C
ur

re
nt

 (p
A)

 

R
el

at
iv

e 
Am

pl
itu

de

Frequency (THz)

(a)

 

 

Figure 3-2. Measured reference pulse (a), and its amplitude spectrum (b). 
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     Figure 3-3
.  Measured propagated pulse through the short waveguide (a), and its
amplitude spectrum (b). 
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     Figure 3-4.  Measured propagated pulse through the long waveguide (a), and its
amplitude spectrum (b). 
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 Even though the amplitude spectra of the propagated pulses indicate a substantial 

loss in power compared to the spectrum of the reference pulse, a lot of useful energy is 

actually getting through, clearly exhibiting very efficient wave-guiding characteristics. 

This loss in signal level is mainly attributed to coupling losses at the entrance and exit 

faces of the waveguide, since the power absorption constant of HDPE is quite low, 

generally less than 1 cm-1 throughout the available spectrum.  

 It is also clear from the relatively smooth output spectra that there is no sharp 

low-frequency cutoff or any unusual oscillations (interference in the frequency domain 

due to multimode propagation) as observed in earlier investigations [1,2]. The 

smoothness in the amplitude spectra strongly implies dominant single-mode propagation 

through these planar waveguides, where the propagating mode has a cutoff frequency of 

zero. 

 Careful observation in the time domain indicates that the front-end of both output 

pulses arrive almost immediately after the arrival of the input reference pulse. This 

implies that the group velocity at the lower end of the spectrum is distributed very close 

to the velocity in free-space, for both waveguides. 

 

 

 

 

 

 

 



 

 

Theoretical Analysis 

 
The fundamental equation governing the input and output relationship of the 

system, assuming single-mode propagation, can be written in the frequency-domain as, 

                                          LαLββj
refout ee ozTCωEωE −−−= )(2)()(                                    (3-1) 

where Eout(ω) and Eref (ω) represent the spectral components of the output and reference 

electric fields, respectively, T is the total transmission coefficient, C is the amplitude 

coupling coefficient, βz is the phase constant, βo = 2π/λo, α is the amplitude absorption 

constant, and L is the distance of propagation. 

 

Modal Analysis 
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Figure 3-5. Longitudinal cross-section of the dielectric slab waveguide. 
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ased on the well-known slab waveguide model [14], for an input (Gaussian) 

field that is linearly polarized in a direction (y) normal to the plane of the 

 slab, shown in Figure 3-5 as having a thickness of 2h, only TM (odd) modes 

 in the waveguide. The non-vanishing terms of the field components (for a loss-

) can be written as 
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where              dddzyd εµωβββ 2222 ==+    and   ooozyo εµωββα 2222 ==+− .                  (3-5) 

Here, subscript o stands for free-space quantities, and d stands for values inside slab. As 

commonly used, ω is the angular frequency, β is the phase constant, α is the attenuation 

constant (doesn�t contribute to real power dissipation), ε is the permittivity, and µ is the 

permeability. A and B are two arbitrary constants which determine the absolute values of 

the fields. 

The cutoff frequencies are given by   

                                             
14 −

=
r

cm εh
mcf ,     m = 0, 2, 4, �                                  (3-6) 

where c is the velocity in free-space, and εr is the relative permittivity. The dominant 

mode is the TM0 mode and its cutoff frequency is zero. It should be noted that the above 

analysis is carried out under the two-dimensional approximation, ∂/∂x = 0. 
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Phase Constant 

Application of boundary conditions yields the nonlinear transcendental equation 

[14] 

                                                 hαhβhβ
ε
ε

yoydyd
d

o =)tan()(                                             (3-7) 

which is used to numerically evaluate the phase constant βz with the help of Equation (3-

5) and the condition  ddzoo εµωβεµω << . 

Once the phase constant has been evaluated, the phase velocity (υp) and group 

velocity (υg) can be calculated as   
β
ωυp = ,   

β
ωυg ∂

∂= . 

 

Absorption Constant 

The absorption associated with a dielectric waveguide having an axially uniform 

cross-section can be derived, by following Reference [15]. It is clear from this analysis 

that the absorption for a guided-mode can be written as 

                                                        'Rεαα rBulkGuide =                                                  (3-8) 

where αBulk is the absorption constant of the bulk dielectric material forming the 

waveguide, and the unitless quantity 
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Here, ηo is the intrinsic impedance of free-space, Ai is the cross-sectional area of the core 

region, At is the total cross-sectional area (including the surrounding region of the guide), 

za�  is the unit vector in the direction of propagation, and E and H are the electric and 
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magnetic field vectors of the guided-mode under consideration. 

By choosing a desired configuration such as a slab (or film), the absorption can be 

drastically reduced [5]. Direct evaluation of R′ using Equation (3-9) for the dominant 

TM0 mode of the slab waveguide yields 
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Coupling & Transmission Coefficient 

This calculation is done based on a quasi-optic picture assuming fundamental 

Gaussian beam propagation through the free-space paths. At the entrance face of the 

waveguide, a Gaussian beam is coupling onto waveguide modes. For single-mode 

propagation, at the exit face of the guide, the single guided-mode is coupling onto free-

space Gaussian modes. Reciprocity of the system dictates an acceptance of only the 

fundamental Gaussian beam at the receiver. Due to this inherent symmetry, the amplitude 

coupling coefficient C is assumed to be the same at the input and output of the 

waveguide. The validity of these results is governed by the completeness and 

orthogonality of the respective modes [14,16]. 

The total transmission coefficient that takes into account the reflection losses (due 

to the impedance mismatch) at the input and output of the waveguide is given by 

                                                          2)(
4

op

op

ηη
ηη

T
+

= ,                                                 (3-11) 
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where the wave impedance of the guided-mode is taken to be  
d

z
p ωε

βη = . 

The coupling coefficient is evaluated using the well-known overlap-integral [2] 

                                                        ∫ ∗⋅=
tA pi dAC )( EE ,                                            (3-12) 

where E i and E p represent the normalized electric field vectors of the Gaussian beam and 

the dominant guided-mode, respectively. 

 

 

Comparison of Theory with Experiment 

 
 For the comparison, a thickness of 155 µm and a propagation length of 10.0 mm 

for the short waveguide, and a thickness of 116 µm and a length of 20.1 mm for the long 

waveguide, were used as the fitting parameters in the calculation. With respect to the 

actual dimensions of each waveguide, these are very realistic values. A constant 

(frequency-independent) refractive index of 1.5, was also used in the calculation, which 

is in good agreement with the negligible material dispersion (flat index) HDPE exhibits, 

all the way, into the far-infrared [17,18]. 

 The complete theoretical propagation can be analyzed in terms of the dominant 

TM0 (odd) waveguide mode, which has a zero cutoff frequency, as predicted by the 

experiment. Even though the wideband input spectrum extends beyond the cutoff 

frequency of the next higher-order (odd) mode permitted by the geometry of the 

waveguide (1.7 THz for the short one, and 2.3 THz for the long one), the output spectra 

do not reveal any significant multi-mode effects. This can be explained by the free-space 

to waveguide coupling, which is quite sensitive to the relative shape and the polarization 
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of the beams. An elaborate discussion on this coupling aspect, with respective mode 

profiles, will follow later.  

 A notational confusion may arise from the above argument, which cites coupling 

from an even Gaussian beam to an odd waveguide mode. In the particular waveguide 

theory employed here [14], odd (or even) pertains to the magnetic vector potential, and 

not to the electric field amplitude. For the odd modes, the relevant electric field (in the y-

direction) turns out to be even, since it is evaluated as the first derivative of the vector 

potential. 

 

Phase & Group Velocity 

 The first step in the analytical process is the calculation of the phase constants 

derived separately from the measured data, and the underlying theory. Based 

on Equation (3-1), the experimental value of the phase constant βz can be evaluated by 

taking the ratio of the phase spectra of the propagated and reference pulses. The plane 

wave nature of the input and output Gaussian beams at the entrance and exit faces of the 

waveguide does not allow any phase contribution from the product TC2. 

 The theoretical value of βz is numerically (iteratively) evaluated at each 

frequency, using Equations (3-7) and (3-5), as explained earlier. In general, at high 

frequencies, the transcendental equation (3-7) may have more than one solution 

(implying the possibility of higher-order modes), within the range stipulated by the 

inequality condition. When this occurs, the appropriate value for the lowest order 

dominant mode is found to be the one having the largest value, in accordance with 

Equation (3-5). 
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     Figure 3-6.  Theoretical and experimental values of the phase velocity and group 
velocity for the short (thick) waveguide (a), and the long (thin) waveguide
(b). The dots and the open circles correspond to the experimental values. 
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 The theoretical and experimental values of υp and υg derived using βz, are plotted 

(as a ratio with respect to c) in Figures 3-6 (a) and (b) for the short and long waveguides, 

respectively. It can be clearly observed that the velocities approach that of bulk 

polyethylene at the high frequencies, while at the very low frequency end they approach 

that of free-space. This changeover is due to the spatial power flow of the waveguide 

changing from containment within the core region at high frequencies, to a surface-

guided wave traveling in the free-space region at low frequencies. Most of the GVD is 

seen to occur towards the low frequency part of the spectrum, up to about 1 THz for the 

short and thick waveguide [Figure 3-6 (a)], and up to about 1.4 THz for the long and thin 

one [Figure 3-6 (b)]. This highly dispersive region corresponds to a positive chirp in the 

time-domain, where υg decreases as the frequency increases. The wider range for the thin 

one would generally imply that if the waveguides were of the same length, the thin one 

would cause more oscillations in the time-domain, than the thick one. 

 At the low-frequency limit υg is very close to c, explaining the almost immediate 

arrival of the propagated pulses with respect to the arrival of the reference pulse. An 

interesting feature in the υg plot is the presence of a well-defined minimum region with 

zero GVD, which conveys the possibility of two different frequency components on 

either side of the minimum, propagating with the same υg, which in turn would give rise 

to an interference effect among different frequency components in the time domain. This 

interference (in the same mode) is exclusive to the time-domain, and will not be present 

in the amplitude spectra. Furthermore, the minimum points (which correspond to the 

frequencies having the lowest velocities) for both the thick (short) and thin (long) 

waveguides, are at relatively the same level, and implies that pulse broadening would be 
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more or less the same, if the waveguides were of the same length.  

 As can be seen by the comparison, there is excellent agreement between theory 

and experiment. The noise present in the group velocity plots, at the high frequency end 

and at the extreme low frequency end, is caused by the inherent enhancement in taking 

the first derivative. 

 

Mode Profile 

 The mode profile of the guided-mode can be derived once βz is known, using 

Equations (3-2) to (3-5). This, expressed in terms of the magnitude variation of the key 

component of the electric field (Ey), is frequency dependent as shown in Figure 3-7, 

which illustrates that associated with the short waveguide. In particular, this is the 

normalized electric field in the y-direction, evaluated at points located along the y-axis, at 

an arbitrary cross-section of the waveguide, where the origin of the x-y plane is at the 

centroid of the cross-section. 

 Figures 3-7 (a)-(d), correspond to the frequencies, 0.3, 0.6, 1, and 2 THz, 

respectively. The changeover in the spatial power flow, going from a surface-guided 

mode at low frequencies to a fully confined mode at high frequencies, is clearly seen 

from this diagram. Due to the boundary conditions at the slab surfaces, where the electric 

field is normal to the air-dielectric interface, there is a discontinuity in the field amplitude 

corresponding to a factor of εr. 

 

Quasi-optic Coupling 

The coupling can be understood in terms of a modal expansion of the input 
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tangential field, where the field can be uniquely represented by a summation over the 

eigen-modes that form a complete basis set [19]. In general, for the planar dielectric 

waveguide, in addition to the discrete spectrum of guided-modes, a continuous spectrum 

of radiation modes is also required for completeness [16]. But here (and in almost all 

other literature) radiation modes are not included for simplicity [20,21]. Radiation modes 

do not play a significant role when almost all of the power is coupled into the guided-

modes. A complete set of guided-modes is formed by the two generic classes referred to 

as TM (transverse magnetic to the direction of propagation) and TE (transverse electric to 

the direction of propagation). Each class is further divided into Odd and Even groups 

based on the functional symmetry of their vector potentials. 

The experiment demands an even Ey component, making propagation possible 

only for the TM (odd) modes. And due to the orthogonality of these guided-modes, the 

coupling coefficients can be derived by the calculation of the overlap-integral as 

described in Equation (3-12). It should be noted that the entire analysis uses a two-

dimensional model, which implicitly assumes a Gaussian profile in the x-direction for the 

guided-mode fields, in the coupling calculation. The two-dimensional approximation is 

justified because there are no restrictions (boundary conditions) to the field along the x-

direction [22]. 

As mentioned earlier, the geometry of the waveguides used in the experiment, 

actually permits the propagation of two TM (odd) modes, the dominant mode with a zero 

cutoff frequency, and the next higher-order mode with a cutoff at 1.7 THz for the short 

one, and at 2.3 THz for the long one. But, the experimental results suggest a 

predominantly single-mode propagation. A qualitative explanation to this can be given 
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using Figure 3-7. It was stated earlier that any input field could be uniquely represented 

by a combination of the waveguide modes. It is understood that these modes are excited 

to match the input beam in space and in time (at the entrance to the waveguide). The 

incident beam has a Gaussian profile that matches well with the guided-mode profile at 

sufficiently high frequencies [Figure 3-7 (d)]. As the frequency gets lower, the guided-

mode profile starts to deviate considerably from a Gaussian, and the mismatch becomes 

more and more prominent. This is apparent going from Figures 3-7 (d) to (a). Therefore, 

at low frequencies more modes are required for matching. But, at the same time, the 

waveguide doesn�t allow any higher-order modes to propagate below 1.7 THz for the 

short waveguide, and 2.3 THz for the long one. And therefore, a predominantly single-

mode propagation prevails. There may be a slight trace (of the next higher-order mode) 

going through, which compensates for the mismatch at high frequencies. If present at all, 

this leakage will be greater for the short waveguide. The modes that are excited, but not 

allowed to propagate (below cutoff), will radiate from the sides of the guide at the 

vicinity of the excitation point. 

 Even though previous studies have emphasized coupling of the Gaussian input to 

the waveguide to be at the exact waist of the input beam, thorough investigations reveal 

that a slight shift (of the waveguide face) from the waist position gives much better 

overall coupling throughout the spectrum. This new finding is attributed to the frequency 

dependent nature of the spatial mode profiles, in contrast to the modes of metal 

waveguides. Slightly away from the waist position, the size of the minor axis of the 

elliptic-Gaussian beam (which is frequency independent at the waist) increases with 

decreasing frequency, accommodating the expanding field of the guided-mode. 
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 Most of the above arguments will also hold at the exit face of the waveguide, the 

only difference being that coupling is from the (single) guided-mode to free-space 

Gaussian modes. Due to reciprocity, only the fundamental Gaussian mode will be 

accepted by the receiver, which results in an almost identical situation at the exit face. 

 

Absorption 

 If the power absorption constant of the bulk dielectric material is known, the loss 

due to absorption by the waveguide can be calculated using Equations (3-8) and (3-10). 

But, obtaining the exact absorption (in the THz frequency range) of processed 

polyethylene is not a simple task, given the inherent specimen dependence (variations 

from sample to sample). Impurities acquired during the manufacturing process play a 

significant role in the actual absorption. Therefore, it was deemed necessary to derive the 

absorption of the bulk material, also using the results of the experiment, in order to carry 

out a final comparison of the measured propagated pulse with a theoretical one (where 

the reference pulse is subjected to a theoretical propagation through the waveguide). 

 Since there are two sets of data (for the two guides) and all the waveguide 

parameters except the absorption is known, one set of data can be used to derive the 

absorption, which in turn can be used on the other set to carry out the calculation in the 

time-domain. This method of deriving the bulk absorption assumes a very pure spectral 

analysis using the relevant amplitude spectra, which can be contaminated by any multi-

mode effects. Therefore, the data set of the long waveguide, which has the least 

probability of contamination (due to less leakage), was used for the absorption 

calculation. And this value, which was found to be reasonably consistent with published 
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      Figure 3-8.  Measured (dots) and theoretically predicted (solid line) propagated pulses 
through the short waveguide (a), and the corresponding amplitude spectra
(b). Amplitude spectrum of the reference pulse (crosses) is also shown in (b).
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[17,18,23] and unpublished results, was used on the short waveguide data to derive the 

theoretically propagated pulse. In calculating the propagated pulse, the time-domain 

reference pulse was transformed into the frequency-domain (by taking the Fourier 

Transform), where all the propagation and coupling parameters had been evaluated for 

the short (thick) waveguide. Substituting in Equation (3-1), and transforming back into 

the time-domain (by taking the Inverse Fourier Transform), leads to the calculated output 

waveform. This final comparison shown in Figure 3-8 (a) with the corresponding 

amplitude spectra in Figure 3-8 (b), clearly shows excellent agreement between theory 

and experiment, in keeping with any inaccuracies that may have come into play during 

the experimental procedure. 
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PARALLEL-PLATE WAVEGUIDE 
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     Figure 4-1.  The lens-waveguide-lens system. The plate separation
has been exaggerated for clarity. 
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s shown in Figure 4-1, the waveguide consists of two parallel conducting plates 

ed close together to form the guide. In this experiment the gap between the plates 

filled, even though in general, it can be filled with any dielectric material. The 

lates were machined using commercially available copper having an electrical 

ivity of 5.76 ×107 S/m. The inner surfaces as well as the side surfaces forming the 

d output faces of the waveguide were polished using 1500 grit finishing sheets. A 

separation was provided by two dielectric strips sandwiched between the plates at 

and bottom. This provided an air-duct having cross-sectional dimensions of 

(thick) by 15 mm (wide). Since the lateral width of the beam was smaller than 

it was guaranteed that the guide acted in a manner similar to a parallel-plate 
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waveguide. Two waveguides, differing in length were fabricated in this manner, one 

12.6 mm long and the other 24.4 mm long. 

The cylindrical lenses used were different from the earlier experiment, with a 

much larger focal length (≈ 0.75 mm from the flat surface). These were used to provide a 

larger delay to the reflections, allowing artificial removal of the reflections from the main 

pulse, in order to clean up the amplitude spectra. 

 

 

Experimental Results 

 
As before, the reference input pulse is obtained by removing the waveguide and 

moving the cylindrical lenses to their confocal position. This pulse which has a positive 

peak of approximately 0.5 nA and a FWHM of about 0.3 ps is shown in Figure 4-2 (a). 

The small secondary pulse seen after a delay of about 10 ps is due to the reflections from 

the flat surfaces of the two lenses. The propagated pulses through the 12.6 mm long and 

the 24.4 mm long parallel-plate waveguides are shown in Figures 4-2 (b) and (c), 

respectively. The secondary pulses are due to the reflections at the input and output of the 

waveguides. Even though the wave impedance is the same for the freely propagating 

Gaussian beam and the guided mode, the reflections at the input and output faces of the 

waveguide (in addition to the reflections from the flat surfaces of the lenses) are due to 

the mismatch in the size (especially at low frequencies) of the freely propagating beam 

and the guided mode at the coupling plane. Each secondary pulse, seen after the main 

propagated pulse, is in fact the result of two pulses (created at the two ends of the 

waveguide) overlapping in time. 
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      Figure 4-2.  Scans of the reference pulse (a), the propagated pulse through the
short waveguide (b), and the propagated pulse through the long
waveguide (c). The zero reference time is the same for (a)-(c). 
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     Figure 4-3.  Comparison of the reference (dashed line) and propagated pulses (a), and
their amplitude spectra (b). The thin and thick solid lines correspond to
the output of the short and long waveguides, respectively. 
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The comparison of the propagated pulses and the reference pulse given in 

Figure 4-3 (a), plotted to the same time reference, clearly shows almost no dispersive 

pulse broadening and minimal absorption, unlike any of the previous observations on 

THz waveguides [1-3,7]. The low-loss nature of the waveguide and the high coupling 

efficiency is also seen in Figure 4-3 (b), that gives the amplitude spectra of the isolated 

pulses. This shows a useful input spectrum extending from 0.1 to about 4.5 THz as well. 

The relative smoothness of the output spectra with no low-frequency cutoff or any 

oscillations owing to multimode-interference, confirms the single TEM mode behavior of 

the waveguide [1,2]. The single-mode nature of propagation through the waveguides is 

actually apparent by the very clean output pulses that closely resemble the input reference 

pulse. The slight reshaping observed between the two propagated pulses is due to the 

frequency-dependent absorption and to a small amount of dispersion inherent in any 

system with a frequency-dependent loss process, introduced by the finite conductivity of 

copper. The minor change in shape and the slight temporal shift between the reference 

pulse and the propagated pulses are mainly due to the phase and amplitude changes 

caused by the frequency dependent nature of the coupling into and out of the guide. The 

phase was affected as a result of the waveguide (entrance/exit) face moving away from 

the Gaussian beam waist, and the radius of curvature of the phase-front of the beam 

coming into play. 

It should be noted that the time-domain pulses shown are from single scans, 

where no averaging has been carried out to improve the signal-to-noise ratio. 

 

 



 

 

Theoretical Analysis 

 
The fundamental equation governing the input and output relationship of the 

system is identical to Equation (3-1). The phase term in Equation (3-1) illustrates the 

experimental condition that the spatial distance between the transmitter and receiver is 

fixed. Within this fixed distance, the cylindrical lenses are moved and the waveguide is 

inserted as shown in Figure 4-1. This provides an absolute time reference with no 

temporal effects coming into play due to the movement of the lenses. The only time shifts 

in Figures 4-2 (a)-(c) are due to the complex coupling coefficient, and the difference 

between the propagation velocity and free-space velocity c. 

 

Modal Analysis 
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ased on the well-known two-dimensional analysis [24], for an input electric field 

early polarized in a direction (y) normal to the plane of the plates, only TM 

n exist in the waveguide. For a loss-less case, with z-directed propagation, the 

hing terms of the field components are 
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where  m = 0, 1, 2, � and by ≤≤0 . Here, ω, µ, ε, β have their usual meanings, b is the 

plate separation, Am is a constant which depends on the excitation of the waveguide, and 

subscript o stands for free-space quantities. 

The cutoff frequencies are given by 
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 where nd is the refractive index of the insulating medium between the plates. The lowest 

order TM0 mode, which is in fact a TEM mode, has no cutoff frequency, and for perfectly 

conducting plates, has no GVD, with both υg and υp being equal to c, and the wave 

impedance equal to the intrinsic impedance of free-space ηo, for the air-filled case. 

It should be emphasized here, that the TEM mode having no cutoff frequency is a 

subtle difference from the earlier case of the slab waveguide, where the dominant mode 

has a zero cutoff frequency. The TEM mode with no cutoff has the unique ability to 

propagate (transmit) even a dc signal, whereas the mode with a zero cutoff cannot. This is 

clear because the parallel-plate waveguide is in fact a two-conductor transmission line, 

whereas the slab waveguide is just one dielectric slab. 



 

 

Quasi-optic Coupling 

The mode profile, which is expressed in terms of the magnitude of the y-

component of the electric field, has a spatial dependence of cos[mπ y/b] as given by 

Equation (4-2), where y = b/2 corresponds to the axis of the guide. This dependence, 

shown in Figure 4-5, results in an even uniform profile for the TEM mode, an odd profile 

for the TM1 mode, and an even profile for the TM2 mode. Therefore, the next higher-

order mode following the dominant TEM, that a y-polarized, on-axis, even Gaussian 

beam will couple onto, is the TM2 mode. Consequently, single TEM mode propagation is 

achievable by spacing the plates such that the cutoff frequency of the TM2 mode falls 

outside the input spectrum. 

It should be noted that here, unlike in the slab waveguide, the mode profiles have 

no frequency dependence. This is due to the strong boundary conditions at the air-

conductor interface. 
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Propagation Loss 

In general, the propagation loss in a parallel-plate waveguide is two-fold; a loss 

arising from the conduction currents in the metal plates called the conduction loss, and a 

loss arising from the dielectric medium between the plates called the dielectric loss. In 

the case of an air-filled guide, the only loss involved is the conduction loss, which is an 

obvious advantage, out of the many that are described in this study. 

Theoretically, for plates made of a perfectly conducting (infinite conductivity) 

metal, the conduction loss associated with any given mode would be ideally zero. But in 

practice, there would be a loss introduced by the finite conductivity of the metal. This 

conduction loss, which can be expressed in terms of an amplitude absorption constant α, 

is given by [24] 
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The value of the characteristic resistance R will be in ohms, if the conductivity σ is in 

siemens per meter, and the free-space wavelength λo is in meters. The change in the skin-

depth with frequency, gives rise to a frequency dependence in the value of α. 

Based on the above Equation (4-6), it is clear that the conduction loss increases 

with increasing nd (which may seem counter-intuitive, because the conduction loss 

seemingly depends on the dielectric medium), and decreases with increasing b. Once 

again, an air-filled guide proves to be beneficial, obviously providing the minimum 

conduction loss, since the conduction loss increases with increasing nd. It may also seem 

possible to reduce the loss without bound, by increasing the plate separation b. But, more 
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and more higher-order modes will come into play with a larger value of b, thereby putting 

a limit on the separation. Therefore, there is a trade-off in achieving single-mode 

propagation while optimizing the loss. 

In the above discussion regarding the propagation loss, nothing much was 

mentioned about the dielectric loss, since the present experiment was carried out using 

air-filled guides. If a dielectric medium other than air had been used, then the dielectric 

loss for the TEM mode would have been the direct absorption loss of the bulk dielectric 

material. 

 

Kramers-Kronig Analysis 

It was mentioned that for an air-filled guide with perfectly conducting plates, the 

GVD for the TEM mode is zero. But with a finite conductivity, a frequency-dependent 

loss process comes into affect, which in turn has to result in some dispersion mechanism. 

The proof of this argument lies within the Kramers-Kronig relations, which have to be 

satisfied by any physical system under the conditions of causality and linearity [25]. In 

general, the attenuation and dispersion of any physical system is inter-related through the 

Kramers-Kronig relations. If one quantity is known (as a function of frequency), then the 

other one can be deduced analytically using these relations. 

The exact analysis using the Kramers-Kronig integrals requires the full frequency 

dependence ranging from ω = 0 to ω = ∞. In the present study, the goal was to derive the 

dispersion associated with the TEM mode, starting from the frequency-dependent loss 

given by Equation (4-6). It is clear that this loss curve, which has a smooth square-root 

dependence in the THz frequency range, is not applicable to the complete frequency 
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spectrum ranging from 0 to ∞. Therefore, it was deemed necessary to use the nearly local 

approximation to the Kramers-Kronig relations [25], which is expressed as 
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where α(ω) and υ(ω) are the attenuation constant and phase velocity, respectively, at 

angular frequency ω, and υo is some reference velocity at some reference angular 

frequency ωo. It has been demonstrated, that this nearly local approximation represents an 

accurate description of the relationship between the attenuation and the dispersion of the 

system, in the absence of rapid variations with frequency [25]. 

If the phase velocity at a particular reference frequency is known, Equation (4-8) 

can be used to derive the local variation of the velocity around this value, starting from 

the frequency-dependent loss, provided that the loss curve is relatively smooth. 

For the air-filled guide, Equation (4-8) reduces to 
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Comparison of Theory with Experiment 

 
In the present study, the final comparison between theory and experiment was 

carried out in a somewhat different manner to the earlier case. Here, the theoretical 

evaluation of the amplitude coupling coefficient C and the total transmission coefficient T 

were avoided, in order to simplify the analysis. For the two parallel-plate waveguides that 

differed in length, the input and output conditions were assumed to be identical, since 

both had the same plate separation of 108 µm. Therefore, the mode coupling and 

reflection considerations were taken to be the same for both guides, and the product TC2 

in Equation (3-1) was assumed to be identical for both. 

The theoretical loss curves, calculated using Equation (4-6), for the first three TM 

modes in a copper parallel-plate waveguide having a plate separation of 108 µm are 

plotted in Figure 4-6 (a). As shown by this, even if some residual coupling to the TM2 

mode did exist, the higher absorption compared to that of the dominant TEM mode 

would more rapidly attenuate the TM2 mode with propagation.  

As mentioned earlier, the theoretical values of υp and υg can be derived using βz 

that is given in Equation (4-4). Figure 4-6 (b) gives the υp and υg curves (as a ratio with 

respect to c) for the first three modes, which shows the high GVD of the TM1 and TM2 

modes compared to that of the TEM mode. This high GVD is a consequence of the cutoff 

frequencies inherent to the higher-order modes, whereas there is no cutoff for the TEM 

mode. The velocity curve for the TEM mode comes out to be a precisely straight line, 

suggesting a strictly frequency-independent value of c, since perfectly conducting metal 

plates had been assumed in the initial analysis. 
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     Figure 4-6.  Amplitude absorption constant (a), and phase and group velocity (b), for the

first three modes. Cutoff conditions are shown by the dashed lines. (c)
Blown-up view of (b) in the vicinity of unity. Experimental values are shown
by the dots. 
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The experimental values of α and βz can be deduced by applying Equation (3-1) to 

the (Fourier Transformed) data of the short and long waveguides separately, and then 

taking the complex ratio to eliminate the product TC2, and then separating the amplitude 

and phase information. The experimentally determined α is also plotted (dots) in 

Figure 4-6 (a), and this is consistent with the predicted low absorption for the TEM 

mode. The discrepancies may be mainly due to the assumption of an identical product 

TC2 for both waveguides, when analyzing the data. 

In order to compare the experimental value of the velocity dispersion (derived 

from the experimental value of βz) with a theoretical value, the nearly local 

approximation to the Kramers-Kronig relations, was used. Following this analysis, the 

value of υp calculated using Equation (4-9), was compared with the experimental value. 

Use of the local approximation is justified due to the smooth variation in the loss. This 

comparison is shown in Figure 4-6 (c), where the theoretical curve (solid line) has been 

fitted to the experimental values (dots) at 2 THz. The theoretical curve, together with the 

experimental values, clearly exhibits virtually zero dispersion (with a velocity change of 

less than 0.1 % within the relevant bandwidth) even under the influence of a finite 

conductivity. Due to this very slight variation in velocity, if Figure 4-6 (c) had been 

drawn to the same scale as in Figure 4-6 (b), the curve would still look like a straight line, 

corresponding to the value of c. 
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Low Loss TE1 Mode 

 
In contrast to the TM modes discussed earlier, for an input electric field polarized 

parallel to the metal plates, TE modes will be excited in the parallel-plate waveguide 

[24]. The cutoff frequencies are given by the same expression as for TM, Equation (4-5), 

where m ≠ 0. Therefore, the dominant mode in this case would be the TE1 mode, having a 

cutoff frequency of  c/(2bnd). 

It is interesting to note that the conduction loss associated with TE modes actually 

decreases with increasing frequency, away from cutoff, where the conduction loss 

expressed in terms of an amplitude absorption constant is given by [24] 
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This frequency dependence, illustrated in Figure 4-7, is unlike the case of TM modes, 

where the loss increases with increasing frequency, away from cutoff. Figure 4-7 shows 

characteristic loss curves (solid lines) for the TE1 mode [based on Equation (4-10)], in 

comparison to those of the TEM mode (dashed lines). Here, the two curves related to 

each respective mode correspond to plate separations of 100 µm and 200 µm, where air-

filled parallel-plate waveguides made of copper have been assumed. 

This comparison clearly predicts a much lower loss for the TE1 mode (away from 

cutoff) than for the TEM mode. Similar to the TEM mode, the loss can be reduced by 

increasing the plate separation, which would also increase the probability of producing 

undesirable multi-mode propagation, for a given input bandwidth. But the mode profile 

(electric field amplitude) of the TE1 mode has a sin[π y/b] spatial dependence [24] that is 

more closely matched to a Gaussian profile than the flat-top profile of the TEM mode. 



 

 45

And this may provide better selectivity of the TE1 mode, when faced with a possible 

multi-mode situation, implying the capability of handling a larger plate separation 

(thereby reducing the loss further) than with the TEM mode. 

It should be emphasized that even though the TE1 mode looks very appealing in 

terms of propagation loss, it cannot match the performance of the TEM mode in terms of 

dispersion. Due to the presence of the low frequency cutoff, propagation in the TE1 mode 

would result in considerable distortion while being limited in operational bandwidth, 

compared to TEM mode propagation. 
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     Figure 4-7.  Amplitude absorption constant for the TE1 mode (solid lines), in
comparison to that for the TEM mode (dashed lines), for air-filled
parallel-plate waveguides made of copper. 



 

 

CHAPTER V 

 
LONG & FLEXIBLE PARALLEL-PLATE WAVEGUIDE 

 
The goal was to extend the parallel-plate waveguide concept into a physically 

flexible, practicable, THz interconnect with a substantially long propagation length. 

 
Waveguide Specimens 
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(a) (b) 
      Figure 5-1. (a) Cross-sectional view of the waveguide (not to scale).
(b) Plan view of the propagation paths for the 125 mm
long (thick solid line), and 250 mm long (thick dashed
line) waveguides. The x-direction is normal to the plane of
paper.  
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For this experiment, two long parallel-plate waveguides, that were incorporating 

bends, were fabricated in the laboratory. Each waveguide was constructed using two 

100 µm thick copper strips, 35 mm wide and 250 mm (or 125 mm) long. The inner 

surfaces of the strips were polished using 1500 grit finishing sheets. They were joined 

together (electrically isolated) lengthwise by double-sided adhesive tape 10 mm wide and 

90 µm thick, that provided a flexible air-duct having cross-sectional dimensions of 

90 µm × 15 mm between the plates. This is illustrated in Figure 5-1 (a), which shows the 

cross-section of the waveguide. 

Figure 5-1 (b) gives the plan view of the propagation paths for the 125 mm long 

(r = 11.5 mm) and 250 mm long (r� = 27.5 mm, D = 54 mm) waveguides. The bending of 

the waveguides (in a plane normal to the plates) facilitated the long propagation paths 

within the maximum confined space (≈ 24 mm) between the two cylindrical lenses. The 

inverted Ω shape optimized the curvature of the waveguides within this limited space. 

The cylindrical lenses were identical to the ones used in the previous experiment. 

 

 

Experimental Results 

 
The reference pulse shown in Figure 5-2 (a) is obtained by moving the cylindrical 

lenses to their confocal position, with no waveguide in place, as described earlier. The 

small secondary pulse is due to the reflections from the flat surfaces of the two lenses. 

Propagated pulses through the 125 mm long and 250 mm long parallel-plate waveguides 

are shown in Figures 5-2 (b) and (c), respectively. Figure 5-2 (b) is the average of 2 
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     Figure 5-2.  Reference pulse (a), the propagated pulse through the 125 mm 
long waveguide (b), and the propagated pulse through the
250 mm long waveguide (c). 
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scans, and Figure 5-2 (c) is the average of 8 scans. The FWHM is 0.22 ps for the 

reference pulse, 0.25 ps for the output pulse of the 125 mm long guide, and 0.39 ps for 

the output pulse of the 250 mm long guide. Characteristic of TEM mode propagation, the 

propagated pulses clearly exhibit no dispersive pulse broadening. The minimal 

broadening observed in the output pulses is due to the relative loss in the high frequency 

content as seen in Figure 5-3, which gives the amplitude spectra of the isolated pulses. 

The FWHM of the amplitude spectra are 1.62 THz, 1.14 THz, and 0.74 THz, for the 

reference, the output of the 125 mm long guide, and the output of the 250 mm long guide, 

respectively. The smoothness of the output spectra revealing no low frequency cutoff, 

confirms single TEM mode propagation. 

 
 

Figure 5-3. Amplitude spectra of the isolated pulses. 
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Theoretical Analysis 

 
 The input and output relationship of the single-mode waveguide system can be 

written in the frequency domain as 

                                    LαdβLβj
xyrefout ee ozCTCωEωE −−−= )(2)()( ,                                (5-1) 

where Eout(ω), Eref (ω), T, βz, βo, and α are defined as before. Cy is the amplitude coupling 

coefficient for the y-direction (squared, since assumed to be the same at the input and 

output), and Cx is the amplitude coupling coefficient for the x-direction (not squared, 

since unity at the input). L is the distance of propagation, d is the direct free-space path 

length (along the optic axis) replaced by the guide. It should be noted that the assignment 

of the x, y, z, rectangular coordinate system, is identical to the previous studies. 

The coupling coefficient at the input and output of the waveguide is analyzed 

using the standard overlap-integral [Equation (3-12)], where the variable separable nature 

of the respective field quantities is made use of, to breakdown the overall coefficient into 

the two exclusively one-dimensional parts Cx and Cy. Here, Cy takes into account the 

similarity of the input Gaussian beam to the guided mode in the y-direction, and Cx takes 

into account the divergence of the guided mode in the x-direction due to diffraction, 

assumed to be the same as in free-space. At the input of the waveguide Cx will always be 

unity, since the guided mode originates at this point. But, at the output Cx will be less 

than unity, since this effectively gives the overlap between the planar waist profile of a 

Gaussian beam and the relatively larger spherical profile of the same Gaussian beam at 

some distance away from the waist position. In the case of a short waveguide this would 

still be very close to unity, but would drop significantly for a considerably long one, as 

used in this experiment. Figure 5-4 (a) shows the frequency dependence of Cx calculated 



 

separately for the propagation distances of the two guides. Both curves imply that the 

power transfer drops as the frequency increases, consistent with a relatively high 

divergence of the beam at high frequencies, as a consequence of propagating away from a 

frequency 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
0 1 2 3

0.0

0.1

0.2
0.6

0.8

1.0

C
x

(c
m

-1
)

 

α

Frequency (THz)

(b)

(a)
L = 250 mm

L = 125 mm

 

 

 

 

     Figure 5-4.  (a) One-dimensional amplitude coupling coefficient Cx for the two 
waveguides. (b) Theoretical (solid line) and experimental values (dots)
of the amplitude absorption constant α.  
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frequency-dependent Gaussian beam waist. And clearly, as shown by the two curves, at a 

given frequency, the power transfer decreases as the propagation distance increases. 

Applying Equation (5-1) to the short and long waveguide data separately and 

taking the complex ratio, we can eliminate the product TCy
2, and then after extracting the 

amplitude information, obtain an expression for the amplitude absorption α as 
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where subscripts 1 and 2 stand for the short and long waveguides, respectively. 

 

 

Comparison of Theory with Experiment 

 
In order to compare the experimental results with the underlying theory for the 

TEM mode, the experimental value of α determined using Equation (5-2) was compared 

with the theoretical value given by Equation (4-6), for an air-filled guide with a plate 

separation of 90 µm. This comparison shown in Figure 5-4 (b), where the solid line 

corresponds to the theoretical value, shows consistency between experiment and theory. 

The observed excess loss can be attributed to undesirable effects due to the bending of 

the guide, dimensional variations of the waveguide along the transverse and longitudinal 

directions, and surface roughness and impurities of the copper strips.  

A bend, which is a form of discontinuity in the waveguide, can cause undesirable 

reflections and mode conversions resulting in the loss of power. Even though it may seem 

somewhat unreasonable to consider any adverse effects due to bending, because of the 

relatively large radius of curvature (smallest being 11.5 mm) compared to the 



 

 53

wavelength, the existence of any (sharp) unevenness in the bent waveguide that may have 

been caused during the bending process, may give rise to undesirable effects [10]. The 

likelihood of a mode conversion is quite striking, based on the substantial increase in α 

beyond the frequency of 1.5 THz, which happens to be approximately where the cutoff 

frequency of the next higher-order TM1 mode lies. If the TM1 mode were excited 

somewhere along the line, it would not be detected at the receiver due to its odd mode 

profile, resulting in an apparent power loss in the system. And as mentioned in the earlier 

study, the assumption of identical TCy
2 terms for the two waveguides, may have also 

contributed to the overall discrepancy. 
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CHAPTER VI 

 
GUIDED-WAVE THz-TDS 

 
Single-mode excitation of the dielectric slab waveguide and the parallel-plate 

metal waveguide opens up the possibility of carrying out novel spectroscopic studies in 

the far-infrared using guided-waves [26-30]. This THz technology, originally introduced 

via coplanar transmission lines [31,32], can be termed as Guided-Wave THz-TDS. Out of 

the many possible spectroscopic applications, this chapter focuses on absorption spectra 

of thin dielectric films. The film can be in the form of an adsorbed layer (on the surface 

of the dielectric slab waveguide or on the inner surface of the metal conductors of the 

parallel-plate waveguide), for example, a single molecular layer (monolayer), or even in 

the form of a surface reaction such as an oxide layer. In the case of monolayers, due to 

the polarized nature of the fields, information can also be obtained about molecular 

orientation (anisotropy) at the surface [29,30].  

In this theoretical treatment, the overall analysis is carried out using a 

perturbational method, where it is assumed that the presence of the thin film only slightly 

perturbs the fields of the basic waveguide. This allows the use of essentially the same 

fields (except possibly inside the film itself) and properties of the basic waveguide, when 

analyzing the waveguide having the film.  

The resultant absorption constant for the waveguide having the film can be 

expressed as the sum of the individual loss constants associated with the basic waveguide 

and the dielectric film. Therefore, the loss due to the dielectric film can be deduced by 

taking the difference of the loss constants for the waveguide, with and without the film 
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present. Since the loss due to the thin film would be substantially low (depending on the 

sensitivity), it is experimentally desirable for the basic waveguide to possess a very low 

loss. Therefore, high-resistivity silicon would be an ideal choice for the dielectric slab 

waveguide and copper or silver would be ideal for the parallel-plate waveguide. In the 

following discussion, theoretical formulae are developed to infer the sensitivity of each 

waveguide for this type of thin film measurement, first using the dielectric slab 

waveguide, and then using the parallel-plate waveguide.  

 

 

Dielectric Slab Waveguide 

 
In the case of the dielectric slab waveguide, there are two approaches for the 

theoretical development, one is the ray optics approach and the other is the modal field 

approach. It is appealing to look at the ray optics picture because of its highly intuitive 

nature, shedding more light into some characteristic propagation aspects of the 

waveguide. 

 

Ray Optics Approach 

When trying to build up the ray optics picture it is meaningful to start by looking 

at the modal field distribution given in Chapter III. It is clear from Equation (3-2) that the 

fields within the core region can be represented as a superposition of upward and 

downward traveling plane waves of the form 

                                   zβjyβjyβj
xzy

zydyd eeeHEE −−+ ±∝ )(,, .                                  (6-1) 
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A possible pictorial representation would be to use a ray that undergoes total internal 

reflection (TIR) at the top and bottom dielectric-air interfaces, to symbolize a bouncing 

plane wave, as shown in Figure 6-1. The ray can be thought of as a vector normal to the 

phase-fronts of the plane wave. It should be noted that even though Equation (6-1) 

seemingly implies two plane waves traveling in different directions, they are in fact the 

same plane wave, one corresponding to the incident wave and the other to the reflected 

wave, where the reflection coefficient has a magnitude of unity. 

 

 

 

 

 

 

 

Based on this ray optics picture, 

                                          θββ dyd cos=   and  θββ dz sin= ,                                     (6-2) 

where θ is the angle of incidence, and βd is the phase constant of the plane wave bouncing 

inside the dielectric slab. The condition for wave-guiding is given as [14,22] 

                                      πmφθβh d 22cos4 =− ,    m = 0, 1, 2, 3, �                            (6-3) 

where φ is the phase of the reflection coefficient at the interface.  

By using Equation (6-2) and the general relationships in Equation (3-5), it can be 

shown that for the even values of m, Equation (6-3) is mathematically identical to the 

nonlinear transcendental equation (3-7) obtained via modal analysis for the TM (odd) 

Figure 6-1. Ray path due to total internal reflection. 
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modes. Accordingly, the odd values of m will correspond to the TM (even) modes. 

Therefore, results obtained through the ray optics picture would be identical to those 

obtained via modal analysis. 

It can also be shown that for a particular mode of operation, the angle θ decreases 

as the frequency goes down, and equals the critical angle θc at cutoff. Correspondingly, as 

the frequency goes up, θ gets closer to 90°, where the plane wave approaches grazing 

incidence. 

 

Internal Reflection Spectroscopy of Thin Films 

When analyzing the waveguide with a thin absorbing film on the surface, the ray 

optics picture simplifies the analysis by allowing the use of well-established concepts in 

the broad field of Internal Reflection Spectroscopy (IRS) [33]. Since multiple internal 

reflections are involved, the problem can be closely associated with IRS of thin films. 

The loss mechanism here is attenuated total reflection (ATR), where part of the energy in 

the evanescent wave is absorbed by the thin film. The theory is developed, first by 

deriving the loss for a single reflection using concepts in IRS, and then extending it to 

include multiple reflections. 
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     Figure 6-2.  Thin film measurement via IRS.
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In IRS of thin films, a phenomenological parameter known as the effective 

thickness te is used as a measure of the strength of coupling to the film. This is defined as 

the thickness of the film material that would give the same absorption for transmission at 

normal incidence, as that of an internal reflection. The effective thickness for parallel 

polarization (TM) is [33] 
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where, n21 = n2/n1, n31 = n3/n1, and n32 = n3/n2. 

As shown in Figure 6-2, t is the actual thickness of the film, and n1, n2, and n3, are the 

refractive indices of the denser medium, film medium, and rarer medium, respectively. 

With reference to the dielectric slab waveguide, n1 = (εd/εo)1/2 and n3 = 1. 

This expression for the effective thickness is an approximation derived under the 

assumption of a low absorbent, very thin film. Reference [33] states that the accuracy is 

good to a few percent when αf  < 0.1ωn2/c and t < dp, where αf is the amplitude 

absorption constant of the film medium, and dp is the penetration depth of the evanescent 

field, defined as the distance required for the electric field amplitude to fall to 1/e of its 

value at the surface. From the modal analysis carried out in Chapter III, dp = 1/αyo. 

Equation (6-4) shows that the effective thickness is more strongly controlled by 

media 1 and 3 rather than by media 1 and 2. In fact, it can be shown that measurements 

can even be made on films having an index n2 > n1, provided the angle of incidence 

θ > θc, the critical angle for media 1 and 3, given by sin θc = n31. 

Using the concept of effective thickness, the amplitude absorption due to a single 

internal reflection can be written as exp(− αf te), and if there are N reflections, then the 
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resultant absorption becomes exp(− N αf te). For a film coated only on one side of the 

dielectric slab, N can be calculated by dividing the total length L of the waveguide by the 

ray spacing required for one reflection.  

To properly relate the ray spacing to waveguide geometry, the effect of a 

phenomenon known as the Goos-Haenchen shift [26,27,34-36] must be incorporated into 

the ray optics picture. As revealed in Equation (6-3), when the wave undergoes TIR it 

experiences a phase shift φ that depends on the angle of incidence θ. The effect of this 

phase shift is to displace the reflected beam parallel to the interface (along z) with respect 

to the incident beam. 

 

 

 

 

 

 

 

 

One way of interpreting this lateral shift of the reflected beam would be to 

consider that the beam is being reflected not from the true physical boundary, but rather 

from a fictitious boundary located slightly beyond. For TM modes, the distance ∆h 

between the fictitious boundary and the true boundary is given by [34] 
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     Figure 6-3.  Relative locations of the true physical boundary and the 
effective boundary resulting from Goos-Haenchen shift. 
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Based on this interpretation, illustrated in Figure 6-3, an effective waveguide thickness 

can be identified. This is the distance measured between the fictitious boundaries above 

and below the waveguide core, which is equal to 2(h + ∆h). It should be emphasized that 

the effect of the Goos-Haenchen shift is negligible for incidence angles much larger than 

θc, but becomes significant when the angle gets closer to θc. This behavior can be seen in 

Equation (6-5), where ∆h → 0 when θ → 90° and ∆h → ∞ when θ → θc, by replacing βyd 

and αyo with θ using Equations (6-2) and (3-5). Once the value of ∆h is known, the total 

number of reflections can be derived from 

                                                      θ
hh

LN cot
)∆(4 +

= .                                                (6-6) 

Finally, the sensitivity of the waveguide Swg for the thin film measurement can be 

derived, in comparison to a single-pass transmission measurement at normal incidence, 

by considering the ratio 
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In order to get a feel for the numbers involved, characteristic plots associated with 

a typical measurement example are given in Figures 6-4 to 6-6. In this example, a high-

resistivity silicon (n1 = 3.418) waveguide, 2 cm long and 50 µm thick, is used to measure 

the absorption of a film having an index n2 = 1.5. Figure 6-4 (a) shows the variation of 

the incidence angle θ with frequency, for the dominant TM0 mode. As stated earlier, at 

the cutoff frequency of zero, θ = θc, and it increases from this value and gets closer to 90° 

as the frequency goes up. Figure 6-4 (b) shows the variation of ∆h with frequency, where 

the two curves correspond to two different (vertical) scales. This clearly shows its 
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significance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
     Figure 6-4.  (a) Variation of θ with frequency for the TM0 mode. (b) Variation of ∆h

with frequency, plotted to two different vertical scales. The curve on the
left corresponds to mm, and the curve on the right corresponds to µm. 
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 Figure 6-5. Variation of dp (a), and te/t (b), with frequency. 
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Figure 6-6. Variation of N (a), and Swg (b), with frequency. 
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significance at the low frequency end, where it blows up near zero. Figure 6-5 (a) shows 

the change in penetration depth dp with frequency, which can be used as a guideline when 

deciding on the actual thickness of the film to be used in the measurement. Figure 6-5 (b) 

shows the ratio te/t as a function of frequency, clearly indicating an advantage towards 

the low frequency side of the spectrum. Figure 6-6 (a) shows the variation in N, where it 

is seen to have a maximum near 1 THz. The fact that N decreases drastically towards the 

low frequency end (instead of continuously rising as the frequency goes down) is a 

consequence of the Goos-Haenchen shift. Figure 6-6 (b) shows the variation of the 

sensitivity Swg with frequency, where the curve peaks to about 400 around 0.9 THz, 

implying the possibility of measuring absorption of samples two orders of magnitude less 

absorbent, than is possible with a single-pass transmission. The curve also predicts a 

usable frequency band within which the sensitivity enhancement is attainable. 

 

Modal Field Approach 

In this approach, the absorption associated with the thin dielectric film is derived 

in a more straightforward manner than in the ray optics one, explicitly using the modal 

fields. This analysis is also governed by the primary assumption that the thin film 

absorber only slightly perturbs the fields of the basic waveguide. 

The derivation is based on Equations (3-8) and (3-9) that were used to calculate 

the absorption constant for the dielectric slab waveguide. It is understood from Reference 

[15] that these equations are very general and can be used for any wave-guiding structure 

consisting of many dielectric layers, provided it has an axially uniform cross-section. 

Under this condition, Equation (3-8) can be generalized for the case when several layers 
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of the wave-guiding structure have small intrinsic losses. Then, the overall loss will be a 

weighted average of the form 

                                                         ∑=
i

iiriT 'Rεαα                                                  (6-8) 

where αi and εr i are respectively, the absorption constant and relative permittivity of the 

dielectric material in region i, and R′ i is as given in Equation (3-9) where the integral in 

the numerator is evaluated over the cross-sectional area of region i. 

In general, to calculate R′ i associated with a particular dielectric region, the values 

of the field components inside and also outside the region, are required. In the case of the 

dielectric slab waveguide with the top surface (in reference to Figure 6-1) coated with a 

thin film, the fields outside the film region can be assumed to be the same as those for the 

basic waveguide. Therefore, it is only a matter of finding the electric field inside the film; 

and of the two possible components Ey and Ez for the TM0 mode, the value of Ez can be 

taken to be the same as that for the basic waveguide, since this component is tangential to 

the boundary. The value of the normal component Ey is obtained by matching the electric 

displacement vector at the film-air interface. 

The analysis can be simplified by assuming that the fields are constant over the 

film thickness. This assumption, also used in IRS of thin films [33], is valid when the 

film is much thinner than a penetration depth. Therefore, in reference to the modal 

analysis carried out in Chapter III, the electric field components can be expressed as 

                              AirzFilmz EE )()( =      and    Airy
fr

Filmy E
ε

E )()( 1=                         (6-9) 

both evaluated at y = h. The relative permittivity of the film medium 2
2nε fr = , where n2 

is the refractive index, as used in the ray optics approach. 
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Using Equation (6-9) in conjunction with the modal field expressions given in 

Equations (3-2) to (3-4), the value of R′ f (subscript i ≡ f  to denote film region) associated 

with the thin film is evaluated from Equation (3-9), which yields 
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Finally, the sensitivity of the waveguide Swg for the thin film measurement can be 

derived, in comparison to a single-pass transmission measurement as before, by the ratio 
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ffrf
wg

2== .                                    (6-11) 

It can be proven (proof given in the appendix) that this expression for Swg is 

mathematically identical to the one given in Equation (6-7), derived using the ray optics 

approach. This equality is also illustrated in Figure 6-7, which plots the sensitivity Swg as 

a function of frequency, using Equation (6-11). The two curves correspond to different 

film indices (n2 = 1.5 and 3), where the basic waveguide specifications are the same as 

used in the measurement example (L = 2 cm, 2h = 50 µm, and n1 = 3.418) under the ray 

optics approach. The lower curve corresponding to n2 = 1.5 is identical to that shown in 

Figure 6-6 (b). The upper curve corresponding to n2 = 3 (along with the lower curve) 

predicts how the sensitivity varies with the film index. It is seen that beyond a certain low 

frequency (about 0.7 THz in this example), well within the enhancement bandwidth of 

the system, the sensitivity increases as the index goes up. 

It should be noted that even though the modal field approach is conceptually 

different from the ray optics approach, the fact that both methods provide identical 
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results, not only strengthens the validity of each methodology as a whole, but also 

demonstrates the reliability of the particular expressions used to account for phenomena 

such as the Goos-Haenchen shift. 

 
 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0

100

200

300

400

500

600

S w
g

Frequency (THz)

n1 = 3.418 
2h = 50 µm 
L = 2 cm 

n2 = 3 

n2 = 1.5 

     Figure 6-7.  Variation of the waveguide sensitivity Swg with frequency, for two 
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the lower curve corresponds to n2 = 1.5. The lower curve is identical to 
the one derived using the ray optics approach. 
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Parallel-Plate Waveguide 

 
In the case of the parallel-plate metal waveguide the modal field approach is used 

for the theoretical development, under the usual primary assumption of small perturbation 

due to the thin film absorber. Therefore, similar to the previous derivation, the analysis is 

carried out starting from the field expressions of the basic waveguide. The fields for the 

dominant TEM mode are as stated in the modal analysis of Chapter IV, and consists of 

only the Ey and Hx components, simplifying the analysis considerably. 

 

 

 

 

 

 

 

 

As shown in Figure 6-8, the measurement system consists of an air-filled parallel-

plate metal (preferably copper) waveguide with the dielectric film, whose absorption is to 

be measured, coated on the inner surface of the bottom conductor. 

Similar to the modal field approach for the dielectric slab waveguide, the value of 

the Ey component inside the film is obtained as in Equation (6-9), and the absorption 

associated with the film is derived using Equations (3-8) and (3-9). And finally, the 

sensitivity of the waveguide Swg for the thin film measurement, in comparison to a single-

pass transmission measurement, can be evaluated to be 

     Figure 6-8.  Air-filled parallel-plate waveguide with the dielectric 
film coated on the inner surface of the bottom
conductor. 
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bn

LSwg 3
2

=                                                      (6-12) 

where, L is the propagation length of the waveguide, b is the plate separation, and n2 is 

the refractive index of the film medium, as used before. It is interesting to note that the 

same result has been derived (using a stored-energy argument) in Reference [2], for a 

similar thin film measurement using a hollow rectangular metal waveguide under 

dominant mode propagation, for frequencies considerably away from cutoff. 

As seen from Equation (6-12), due to the uniform nature of the fields, Swg has no 

frequency dependence. In contrast to the dielectric slab waveguide, the sensitivity 

decreases as the film index goes up, with a much stronger dependence. 

With regards to the measurement example considered for the dielectric slab 

waveguide, a 2 cm long parallel-plate waveguide with a plate separation of 100 µm will 

have a sensitivity of approximately 59, when the film index n2 = 1.5. The sensitivity will 

drop to approximately 7.4 when n2 increases to 3. To make this waveguide dimensionally 

more compatible with the dielectric slab waveguide considered earlier, a plate separation 

of 50 µm can be used. This will increase the sensitivity by a factor of 2, but would also 

increase the absorption of the basic waveguide by the same factor, and may not result in 

an overall gain. 
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CHAPTER VII 

 
CONCLUSIONS 

 
In this dissertation, two planar waveguides, the dielectric slab waveguide and the 

parallel-plate metal waveguide, were investigated via the propagation of input subps 

pulses, for the use of technical and fundamental research applications in the far-infrared 

frequency range. All of the experimentally observed features were explained in detail 

using classical waveguide theory and quasi-optical theory. The crux of the data analysis 

was carried out in the frequency-domain, by transforming the time-domain data into the 

frequency-domain using the Discrete Fourier Transform. 

The first part of the study demonstrated the feasibility of the dielectric slab 

waveguide as a low-loss, single-mode transmission line that can be used for the THz 

region, capable of utilizing efficient quasi-optic coupling techniques. The substantial 

GVD dictates only frequency-domain applications to be more promising, hindering the 

possibility of undistorted subps pulse propagation. Ultra low-loss lines are possible by 

reducing the thickness of the slab such that most of the guided energy propagates outside 

the core region. The performance could be further enhanced by using a very low-loss 

dielectric material such as high-resistivity silicon, that has a power absorption constant in 

the order of 0.05 cm-1 at THz frequencies. Since the GVD can have a sign opposite to that 

of metal-tube and fiber waveguides, mutual pulse compression should be possible, in 

analogy to dispersion compensation in optical fibers. Backed by the ability of achieving 

low-loss single-mode propagation, the dielectric slab waveguide is particularly well 

adapted for Guided-Wave THz-TDS of surface-specific molecular adsorption layers, or 
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other thin films coating the waveguides, due to the extensive fringing fields of the 

propagating THz waves. Though it has not been mentioned in the study, due to the one-

dimensional nature of the guide, there may be additional losses caused by the divergence 

of the beam in the unguided dimension, depending on the propagation length, and also on 

the refractive index of the dielectric material forming the slab. 

The second part of the study demonstrated the excellent performance of the 

parallel-plate metal waveguide as a wideband THz interconnect that is ideal for 

undistorted subps pulse propagation. It was shown, for an air-filled parallel-plate 

waveguide made of copper, that in addition to the GVD being virtually nil, it also has a 

very low propagation loss, as well as very good quasi-optic coupling properties with very 

low reflection losses. It was also pointed out that the propagation loss could be reduced 

further by using the TE1 mode instead of the TEM mode, but while suffering from 

dispersion. 

As mentioned for the dielectric slab waveguide, the metal plates could be coated 

with films of other metals and alloys, Langmuir-Blodgett films, or conducting polymers. 

These materials could then be characterized in the frequency-domain by Guided-Wave 

THz-TDS. The undistorted propagation of subps pulses opens the door to many new 

time-domain studies as well, that are not possible with any of the earlier THz waveguides 

including the dielectric slab waveguide. A unique application for high-power TEM THz 

pulses would be the study of nonlinear pulse propagation, demonstrating nonlinear 

coherent effects of samples filling the space between the metal plates. For what is 

believed to be the first time, it was shown that a THz pulse propagating in a waveguide 

can maintain its spatial focus for arbitrarily long paths without temporal broadening, 
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thereby enormously increasing the effects of nonlinear interactions. This situation is 

similar to the nonlinear enhancement obtained with optical fibers. Similar to the dielectric 

slab waveguide, the only drawback of the parallel-plate wavguide is the one-dimensional 

nature of the guiding structure. Depending on the length of the guide, additional losses 

can come into play due to the divergence of the beam in the unguided dimension. 

The third part of the study, that extended the concept of the parallel-plate 

waveguide into a long and flexible interconnect, demonstrated better performance than 

any other THz interconnect to date. This physically flexible metal ribbon waveguide, 

having low loss and negligible GVD, transmitted a subps THz pulse a quarter of a meter 

in distance, with an excellent output signal-to-noise ratio. This demonstration shows that 

chip-to-chip THz guided-wave interconnections with data rates approaching Tb/s are 

feasible. In reference to the particular composition of the guiding structure used in this 

experiment, as the beam spreads in the unguided dimension (x), it may be incident upon 

the adhesive tape (used primarily to provide the spacing for the metal plates) boundary. 

To avoid any significant effects (due to reflections) from this boundary, this tape would 

have to be either transparent or a good absorber. No such effects were observed in the 

experiment. 

 The last part of the study, being purely theoretical, concentrated on deriving the 

absorption spectra of very thin dielectric films using the dielectric slab waveguide and the 

parallel-plate metal waveguide as measuring tools, highlighting the importance of 

Guided-Wave THz-TDS. In developing the theoretical formulae for the dielectric slab 

waveguide, two different approaches were used, one involving the modal fields and the 

other involving a ray optics picture. It was shown that both methods converged to give 
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identical results, strengthening the validity of the derivation. This derivation predicted 

that the dielectric slab waveguide could be used to measure absorption of samples two 

orders of magnitude less absorbent, than is possible with a single-pass transmission 

measurement; a highly sensitive evanescent field sensor. Even though the parallel-plate 

metal waveguide (with comparable dimensions) was found to be less attractive than the 

dielectric slab waveguide in terms of sensitivity, it has the potential of being useful in 

measurement situations where the dielectric slab waveguide is not practicable. 
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APPENDIX 

 
PROOF OF EQUALITY OF (Swg)Ray Optics & (Swg)Modal 

 
As implied by the subscripts, (Swg)Ray Optics and (Swg)Modal are respectively, the 

sensitivities calculated using the ray optics approach and the modal field approach for the 

dielectric slab waveguide, when measuring the absorption of a thin dielectric film coated 

on one surface. 

The requirement is to show that (Swg)Ray Optics given in Equation (6-7) and 

(Swg)Modal given in Equation (6-11) are mathematically identical. The proof is as follows. 

From the nonlinear transcendental equation (3-7), 

                                              
yd

yo

oyd

dyo
yd β

nα
εβ
εα

hβ
2
1)tan( == .                                            (A-1) 

Making use of trigonometric identities along with Equation (A-1), 
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Substituting for cos2(βydh) and sin(2βydh) in Equation (6-10) from Equations (A-2) and 

(A-3), Equation (6-11) can be written as 
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Now, from Equation (3-5), 
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Substituting for βz in Equation (A-5) from Equation (6-2), 
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Also from Equation (3-5), 
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From Equation (6-4), since n3 = 1, 
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Substituting for 
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2 1sin
n

θ  from Equation (A-6) and for sin θ from Equation (6-2), 

Equation (A-8) reduces to 
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The denominator on the right hand side 
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and substituting for 
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With the use of Equation (A-10), Equation (A-9) becomes 
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Substituting for ∆h in Equation (6-6) from Equation (6-5), and using Equation (A-11), 

Equation (6-7) can be written as 
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Substituting for cos θ and sin θ from Equation (6-2), and then using 
c
nωβd

1= , the term 
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Combining Equations (A-12) and (A-13) yields, 
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This expression for (Swg)Ray Optics is identical to the one given in Equation (A-4) for 

(Swg)Modal. Therefore, (Swg)Ray Optics = (Swg)Modal. 


