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CHAPTER I 

INTRODUCTION 

 

 

 

1.1 Whispering-Gallery Mode Resonators 

 

The whispering-gallery mode (WGM) represents the electromagnetic wave that circulates 

around the inner surface of a dielectric resonator owing to total internal reflection [1-3].  

The resonator, which can be either a sphere or a cylinder, is usually made of a dielectric 

material with high dielectric permittivity and low loss.  In the spherical case, the 

electromagnetic field of WGM modes is confined in annular “equatorial” area close to 

the resonator surface.  In the cylindrical case, the wave runs in the plane of the circular 

cross-section, and most of the modal energy remains confined between the cylindrical 

boundary and a modal caustic. 

 

In microwave region, conventional cylindrical dielectric resonators are used in many 

passive and active microwave components, where the resonators act on their TE or TM 

modes.  At millimeter wavelengths, resonators of such kind result in exceedingly small 
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dimensions and their Q-factors are strongly reduced.  WGM resonators, however, can 

overcome this serious defect, and are hence very suitable for millimeter wave integrated 

circuits.  Such resonators have been used for frequency filters [4] and power 

combiners [5] in the millimeter-wavelength integrated circuits. 

 

In optical range, the optical cavity has attracted considerable research interest with its 

important applications in laser design [6], cavity-ring-down spectroscopy [7], fiber 

optics [8], and basic research such as cavity quantum electrodynamics [9].  The WGM 

plays an important role in optical cavities.  In this frequency range, the WGM resonator is 

usually a dielectric microsphere.  The high Q value guarantees the building up of the 

electromagnetic field of a certain frequency, which is very important in the applications 

of frequency selection [3], spectroscopy [10], and parameter detection [11-13]. 

 

A WGM resonator is usually excited by the external evanescent fields of the coupler, 

which can be a dielectric prism [3], a tapered optical fiber [8], transmission lines [2], or a 

dielectric waveguide [14-16].  When the electromagnetic wave of the coupler passes the 

coupler-resonator contact region, part of the coupler field is coupled into the resonator 

and propagates around its inner surface.  The coupling sources have been focused mainly 

on single frequency waves.  In this case, the coherence condition must be met for 

constructive interference; in other words, the circumference of the resonator must be an 

integer number of wavelengths of the resonant WGM.  Only a set of discrete frequency 

points can satisfy this condition and survive the continuous coupling.  These frequency 

points, which can be called eigen-frequencies, are usually determined by the dimensions 
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and material properties of the resonator, coupling conditions, and the polarization of the 

coupling source.  A WGM resonator with environment-sensitive dimensions can be used 

as parameter detectors of its surrounding environment, such as strain [11,12] and 

humidity [13].  Such detection is usually achieved by measuring the change of the eigen-

frequencies of the WGM resonator caused by the change of its dimensions due to the 

change of the environmental parameters. 

 

The applications of WGM resonators are not limited by those mentioned above.  With 

high quality factor, size flexibility, wide working frequency range, mechanical stability, 

and adaptability to integrated circuits, WGM resonators are widely used for basic 

research and application purposes, including non-linear optics [17,18], measurement of 

dielectric parameters [16,19], and evanescent-wave sensing [20]. 

 

 

 

1.2 Terahertz Time Domain Spectroscopy System 

 

Since the generation of the subpicosecond (subps) terahertz (THz) radiation by using fast 

photoconductive switches driven by short laser pulses was first demonstrated [21,22], 

THz technology has been a new research frontier, and has become a bridge to connect the 

microwave technology at the lower frequency end and the optical technology at the 

higher frequency end.  Many research topics in the above two frequency regions have 

been expanded to THz region, and THz technology has found its important application in 
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such diverse fields as spectroscopy [23], imaging [24,25], ranging [26], and basic 

material characterization [27,28]. 

 

A typical THz time domain spectroscopy (THz-TDS) system consists of a THz 

transmitter (generator), beam collecting and steering system, and a THz receiver 

(detector).  Both the THz transmitter and receiver are switched by pulsed laser beam.  By 

changing the time delay between the excitation and detection laser beams, a THz time 

domain pulse scan is obtained with both the amplitude and phase information.  The 

complex spectrum with amplitude and phase information can then be retrieved by 

applying digital Fourier transform to the time domain pulse.  A sample scan can be 

compared with a reference scan to obtain the properties of the sample. 

 

A simple, easy and broadly used method to generate and detect the THz pulse is the 

photoconductive antenna, which uses the coplanar transmission lines as the transmitter 

and receiver for the THz radiation [22,23,26-29].  In this system, silicon is broadly used 

in collecting and focusing the THz radiation due to its low-loss and low group velocity 

dispersion in THz range [23].  To increase the signal-to-noise ratio (SNR), the THz beam 

is chopped by an optical chopper and a lock-in amplifier is used to amplify the chopped 

signal. 
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1.3 Terahertz Waveguides 

 

Guided-wave propagation of the THz radiation has attracted much interest as the 

applications of THz technology have greatly expanded.  For freely propagating THz 

beams, subps THz pulses can propagate hundreds of centimeters without pulse 

distortion [23,30].  On the other hand, the propagation on coplanar transmission lines 

cannot exceed 1 cm, owing to the Cherenkov-like radiation [31].  This radiation loss is 

eliminated when the microstrip line is used with silicon-on-insulator materials, but the 

total observed loss owing to the dielectric and metal is still approximately the same as for 

the coplanar transmission line [32]. 

 

The first experimental demonstration of THz waveguides was achieved by coupling the 

freely propagating THz radiation into circular metal tubes using quasi-optical 

methods [33], where the THz radiation propagated for up to 24 mm in the waveguide 

with low loss.  However, due to the dispersive nature of the waveguide modes and the 

multimode coupling, the transmitted THz pulses were greatly broadened in time domain, 

and spectral oscillations were observed in the frequency domain [34].  Single-mode 

transmission of THz pulses has been demonstrated in dielectric circular [35] and planar 

ribbon waveguides [36], with the outstanding problems of pulse broadening and 

frequency chirp.  The first low-loss, non-dispersive propagation of THz pulses is 

achieved by using parallel metal plates as waveguides [37,38], where the THz pulses 

propagate for up to 250 mm in the metal waveguide with negligible pulse distortion. 
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The above progress in THz waveguide study has made possible the guided wave 

propagation and circuit interconnection of the THz radiation.  It is expected that the 

rapidly advancing THz technology will find important applications in new areas only 

previously available to optical or microwave techniques. 

 

 

 

1.4 Purpose of This Study 

 

As the WGM resonators play an important role in the optical and microwave regions, it is 

of great interest and much importance to investigate the coupling and propagation 

properties of a WGM cavity for the THz radiation.  With the progress in the THz 

waveguide study [33-38], a THz WGM cavity will soon be required in the THz integrated 

circuits.  In other WGM-related studies, the coupling source is usually a single frequency 

cw laser [3,39].  However, the THz radiation usually has a time duration of several 

picoseconds, and covers a continuous frequency range from 0 to up to 5 THz.  This 

unique feature will definitely show different coupling and propagation properties. 

 

This dissertation presents an experimental demonstration of a cylindrical WGM cavity 

for the THz radiation [15].  The WGM cavity is a dielectric cylinder and the THz pulses 

are coupled into and out of the cavity via a dielectric slab waveguide.  The coupled 

WGM pulses cover a continuous frequency range of 0.4—1.8 THz and consists of a 

superposition of several WGM modes.  Two cavity pulses are observed from this slab-
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cylinder coupling structure and thereby demonstrate the strong coupling of this coupling 

structure and the propagation properties of the WGM THz pulses [15]. 

 

The detailed coupling structures will be given in Chapter II as well as the coupling 

scheme.  In the theoretical part, the modal analysis for both the slab waveguide and the 

cylindrical WGM cavity are both presented.  A theory governing the coupling – coupled 

mode theory (CMT) – is derived and used to analyze the slab-cylinder coupling structure.  

The numerical calculations show reasonably good agreement with the experiment in both 

the frequency and time domains, and give a good explanation to the coupling behavior 

between the slab waveguide and the cylinder and propagation properties of the WGM 

THz pulses. 
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CHAPTER II 

EXPERIMENTAL SETUP 

AND 

COUPLING STRUCTURES 

 

 

 

The experimental setup is a standard THz time-domain spectroscopy (THz-TDS) 

system [30] presented in Fig. 2-1.  A 40-femtosecond laser pulse train with a nominal 

wavelength of 820 nm and a repetition rate of 100 MHz, generated by a KLM 

Ti:Sapphire laser which is pumped by a Spectral Physics Millennia cw laser, is focused 

onto a coplanar stripline biased at 75 V on a semi-insulating GaAs wafer.  The focus 

point is at the inner edge of the positive polarity line.  This periodic optical pulse 

excitation causes pulsed, subps changes in the conductivity of the gap between the two 

lines, which results in pulses of electrical current, and consequently, bursts of 

electromagnetic radiation in the THz range.  After passing through the GaAs substrate, a 

large fraction of this THz radiation is collected and collimated by a hyper hemisphere 

silicon lens attached to the back side of the GaAs wafer; then the THz beam propagates to 

a paraboloidal reflection mirror where it is recollimated to a highly directional beam.  An 
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Sample

Transmitter Chip Receiver Chip 

Si Lens   THz Pulse 

Laser Pulse Laser Pulse 

Fig. 2-1 Experimental setup. 

identical combination of optics on the receiver side collects the THz beam.  A 

paraboloidal mirror collects and steers the incoming THz beam to a silicon lens, which 

focuses it onto a 10 µm dipole antenna on an ion-implanted silicon-on-sapphire (SOS) 

wafer.  The electrical field of the focused THz radiation induces a transient bias voltage 

across the receiving antenna, which is photoconductively switched by a second optical 

pulse train from the same laser.  A dc current proportional to the instantaneous electrical 

field is thus generated and pre-amplified by a low-noise current amplifier.  In order to 

increase the signal-to-noise ratio (SNR), the THz beam is chopped by an optical chopper 

placed right after the silicon lens at the transmitter side.  A lock-in amplifier then detects 

the pre-amplified current at the reference frequency provided by the chopper, and a 

computer data acquisition system records and analyzes the digital output data from the 
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lock-in amplifier.  By scanning the relative delay between the two laser beams, the 

complete time dependence of the THz pulse including both the amplitude and phase 

information can be obtained. 

 

In order to eliminate the effects of water vapor [40] on the THz beams, the entire setup is 

enclosed in a large airtight box that is purged and kept at positive pressure by dry air 

during the data collection. 

 

Fig. 2-2a shows a scan taken with the above setup purged by dry air.  The positive peak 

of this output pulse has a FWHM of approximately 0.32 ps.  Taking discrete Fourier 

transform of this scan, we get its complex spectrum profile, with the amplitude part 

shown in Fig. 2-2b.  This setup has a smooth frequency response ranging from 0 THz to 

above 3 THz.  The small oscillations in the spectrum are absorption lines from the 

residual water vapor [40], which can be removed by longer purging time with dry air. 

 

For a standard THz-TDS measurement, the sample under investigation is usually placed 

at the waist of the THz beam in between the two paraboloidal mirrors [27,28].  In our 

case, the sample is the slab-cylinder coupling structure with plano-cylindrical lenses, 

which is placed in the central position between the two paraboloidal mirrors.  As 

illustrated in Fig. 2-3, we use two similar coupling structures, both composed of a silicon 

cylinder and a silicon slab waveguide sandwiched between two metal plates with an open 

window in the middle.  Here is the detailed information of the dimensions of the two 

coupling structures: 
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A.  Silicon cylinder: 5 mm (diameter) × 10 mm (height-x); 

Silicon slab waveguide: 20 mm (length-z) × 100 µm (thickness-y) × 20 mm 

(height-x); 

Aluminum plates: identical, 24.5 mm (length-z) × 5 mm (thickness-y) × 40 mm 

(height-x), with open window of 7 mm (length-z) × 17 mm (height-x) in the 

middle. 

B.  Silicon cylinder: 5 mm (diameter) × 10 mm (height-x); 

Silicon slab waveguide: 17.5 mm (length-z) × 100 µm (thickness-y) × 12.5 mm 

(height-x); 

Aluminum plates: both are 18 mm (length-z) × 40 mm (height-x) with open 

A. 

Slab Waveguide 

z 

y 

x 

θ 

Aluminum Plate 

Cylinder 

Cylindrical Lens

B. 
z 

y 

x 

θ 

Fig. 2-3 Cross sections of the slab-cylinder coupling structures A and B. 

12 



window of 3.2 mm × 17 mm (height-x) in the middle; the thicknesses are 4 mm 

(top) and 2.5 mm (bottom); the open window of the bottom plate is carefully 

milled out using a 6.2-mm-diameter ball-end bit to place the cylinder in contact 

with the slab waveguide. 

 

The two plano-cylindrical lenses, the slab waveguide, and the cylinder are all made of 

high-resistivity silicon, which has very low energy absorption and almost no dispersion at 

THz frequency range [23].  The plano-cylindrical lenses are used to couple the incoming 

THz beam into and out of the slab waveguide [36,37].  The lens at the input of the guide 

is used to focus the beam along only the y-direction, producing an approximately 

Gaussian beam having an elliptical cross section at the waist, with a frequency-

independent 1/e-amplitude minor axis of 200 µm [36,37].  An identical optical 

arrangement is used at the exit face.  In order to confine the beam height of the incoming 

THz pulse, a 3-mm (height-x) and a 5-mm-diameter aperture is placed before the left lens 

for structures A and B, respectively. 

 

The metal plates in the coupling structures serve as a firm holder for the thin slab 

waveguide, so the latter does not change its position when the cylinder is brought into 

contact with it.  The incoming THz beam is focused by the cylindrical lens and is coupled 

into the metal waveguide formed by the metal plates filled with air or the silicon slab.  In 

the air-filled metal plate waveguide, the THz pulse propagates in a single TEM mode 

with negligible dispersion and loss [37].  In the case of silicon-filled metal plate 

waveguide, if there is no air gap between the silicon slab and the metal plates, the THz 

13 



pulse will also couple dominantly into TEM mode.  In experiment it is difficult to get an 

intimate contact between the silicon slab and the metal plates, so an air gap may exist 

between the silicon slab and the metal plates.  In this case the THz pulse will not couple 

into a pure TEM mode.  However, in the analysis, we will still assume that the THz pulse 

propagates in the TEM mode of the silicon-filled metal plate waveguide.  This 

assumption will not affect our numerical analysis, as will be seen in Chapter VI. 

 

In the open window region, the pulse propagates dominantly in the TM0 mode of the slab 

waveguide with high group velocity dispersion [36], which causes pulse broadening and 

frequency chirp.  This pulse broadening can be reduced by reducing the length of the 

open window, as will be seen in the experimental results. 

 

When the cylinder is brought into contact with the slab waveguide in the open window 

area, part of the incoming THz pulse will be coupled into the cylinder as a linear 

combination of cylindrical WGM modes; the remaining pulse continues to propagate 

along the beam path of the system and is detected as the main transmitted pulse.  The 

WGM-THz pulse travels continuously around the cylinder.  When it returns to the slab-

cylinder contact region after one round trip, part of this pulse will be coupled into the slab 

waveguide and will arrive at the THz receiver to be recorded as the first cavity pulse.  As 

this coupling occurs every time the circulating WGM-THz pulse returns to the contact 

region, a cavity pulse train is generated.  This process is illustrated in Fig. 2-4. 

 

Originally we made only structure A for our experiment.  After experiment with structure 
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CP2 CP1 
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Fig. 2-4 Illustration of the coupling between the slab and the cylinder.  CP

stands for cavity pulse. 

A, we made structure B to improve the experimental results.  The main difference 

between the two structures lies in the lengths of the open windows.  If the cylinder is not 

present, in the reference scan we will obtain a main transmitted pulse and some reflection 

pulses.  The dominant reflection pulses will be those from the cylindrical lenses.  As the 

transmitted pulse is broadened by the propagation in the open window area, the reflection 

pulses are also expected to have the similar broadening.  As will be seen in the scans, the 

delay of one reflection pulse is very close to the first cavity pulse.  By reducing the length 

of the open window, the pulse broadening effect will be reduced for the transmitted 

pulses, and hence for the reflection pulses.  This reduction gives a longer time window 

for the cavity pulse where there is no background pulse in the reference scan, so that a 

clearer cavity pulse can be obtained.  Structure B has an open window of 3.2 mm, 
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compared with 7 mm for structure A, so the transmitted pulse width for structure B will 

be much shorter than that for structure A.  We expect that we can obtain a better scan of 

cavity pulses for structure B. 

 

In the scan we will also get a reflection pulse from between the planar surface of the 

cylindrical lens and the entrance (exit) surface of the silicon slab.  The distance between 

the two surfaces is approximately 3 mm for structure A and 0.7 mm for structure B, 

corresponding to a time delay of about 20 ps and 4.7 ps, respectively.  This delay is small 

compared to the pulse width of the main transmitted pulse, so the reflection pulse will be 

added to the main transmitted pulse and contributes to its broadening.  For this reason, 

structure B will get less pulse broadening from this reflection pulse, due to its shorter 

time delay compared with that for structure A. 

 

For structure B, we also improve the cylinder holder.  Fig. 2-5 illustrates the cylinder 

holders we used for the two structures.  For structure A, the holder head is attached to a 

plastic bar with a piece of sponge. The plastic bar is able to move in three transitional 

directions x, y, and z, and can rotate in x-z plane.  The purpose of using the sponge is to 

avoid any damage to the silicon slab waveguide when the cylinder is brought in contact 

with it.  However, since the sponge is very flexible, when rotated in x-z plane, the 

cylinder may not rotate accordingly, making it very difficult to vertically align the 

cylinder.  To solve this problem, we place two parallel plastic plates on both sides of the 

holder in the sponge area, so the cylinder will rotate along with the plastic bar.  This 

allows us to vertically align the cylinder so that the axial direction of the cylinder is 
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parallel to x direction. 

 

In experiment, we observed the first two cavity pulses for both the coupling structures.  

The following chapters will present the experimental results and the theory used to 

analyze this coupling structure. 
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Fig. 2-5  Cylinder holders for (a) structure A and (b) structure B.  The bottoms 

are the top views. 
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CHAPTER III 

EXPERIMENTAL RESULTS 

 

 

 

3.1 The Input Pulse 

 

In experiment, the coupling structure including the two plano-cylindrical lenses as shown 

in Fig. 2-2, is placed in between the two paraboloidal mirrors of the THz-TDS 

system [36,37], as indicated by the dotted rectangular in Fig. 2-1.  The input pulse is 

measured by removing the coupling structure and moving the cylindrical lenses to their 

confocal position [36,37].  This pulse is presented in Fig. 3-1 along with its spectrum.  As 

shown in the figure, this pulse has a smooth spectrum and a narrow pulse width, with a 

FWHM of 0.27 ps for the big positive peak.  Compared with the spectrum shown in Fig. 

2-2, this spectrum has a very smooth profile without any spectral oscillations, indicating 

that the system contains no water vapor as a result of the long purging time by dry air. 
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Fig. 3-1 (a) Measured input pulse and (b) its spectrum. 
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3.2 Results from Structure A 

 

For the coupling structures A and B, the reference scan is taken without the cylinder, and 

the sample scan is taken when the cylinder is brought into contact with the slab 

waveguide in the open window region.  By comparing the reference scan and the sample 

scan, the coupling properties and the propagation properties of the WGM THz pulses can 

be retrieved. 

 

For the coupling structure A, the reference scan is presented in Fig. 3-2a, which shows 

that the main transmitted pulse is followed by two smaller pulses R1 and R2, the first and 

the second reflection pulses from the cylindrical lenses.  Compared with the input pulse 

in Fig. 3-1, the three pulses are extremely broadened due to the 7 mm propagation in the 

open window area, with a FWHM of about 10 ps for the main transmitted pulse.  The 

sample scan is shown in Fig. 3-2b.  In addition to the three pulses in the reference scan, 

three new pulses CP1, CP2 and RCP1 appear in the sample scan. 

 

As described in Chapter II, when the cylinder is brought into contact with the slab 

waveguide, a WGM-THz pulse will be formed inside the cylindrical cavity and a cavity 

pulse train will be generated.  If we assume the WGM-THz pulse travels around the 

cylinder at a velocity equal to that in the bulk silicon, the time delay between the first 

cavity pulse and the main transmitted pulse can be calculated as 

 τ1 = 2π nca/c, (3-1) 

where nc = 3.417 is the refractive index of the cylinder (silicon) [23], a = 2.5 mm is the  
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radius of the cylinder, and c is the speed of light in free space.  Substituting the 

corresponding values into the above equation, we get τ1 = 179 ps, which is in excellent 

agreement with the experimental delay of 172~187 ps between CP1 and the main pulse; 

thus pulse CP1 is identified as the first cavity pulse.  Accordingly, the second cavity 

pulse has a time delay of τ2 = 2τ1 relative to the main pulse.  The experimental delay of 

pulse CP2 relative to the main pulse is in the range of 337~367 ps, which is again in good 

agreement of the calculated value τ2 = 358 ps; thus pulse CP2 is identified as the second 

cavity pulse.  In addition, with an experimental delay of 170~190 ps relative to pulse R1, 

pulse RCP1 is identified as the first cavity pulse from pulse R1. 

 

Fig. 3-3 shows the magnifications of Fig. 3-2 for the main transmitted pulses of the 

reference and sample scans and their corresponding spectra.  In the time domain, the 

intensity of the main pulse remains almost the same when the cylinder is brought into 

contact with the slab waveguide, except in the leading part, where the small oscillations 

are greatly suppressed by the slab-cylinder coupling.  These oscillations contain the low 

frequency components with the highest group velocities [36].  The suppression of the 

oscillations indicates a strong coupling between the slab waveguide mode and the 

cylindrical WGM modes.  In the frequency domain, though accompanied by spectral 

oscillations, the spectra show the single-mode propagation of the main transmitted pulses, 

as described in Chapter II.  The spectral oscillations, with a frequency period of 

approximately 0.05 THz, are due to the reflections between the planar surfaces of the 

cylindrical lenses and the entrance and exit surfaces of the silicon slab, separated by 

approximately 3 mm. 
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Fig. 3-3  Main transmitted pulses and their spectra for structure A. (a) Reference

scan. (b) Sample scan. (c) Spectra of pulses (a) and (b). 
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Figs. 3-4a and 3-4b are magnifications of Fig. 3-2 for the first and the second cavity 

pulses CP1 and CP2, respectively.  Their respective spectra are presented in Figs. 3-5a 

and 3-5b.  Compared with the spectrum of the main pulse (Fig. 3-3c), the spectra of the 

cavity pulses have complicated structures and oscillations.  Since the incoming THz pulse 

in the slab waveguide is propagating in a single mode, the spectral oscillations in the 

cavity pulse indicate that the WGM-THz pulse inside the cylindrical cavity is composed 

of several WGM modes [34]; the oscillations occur because the phase velocities are 

different for the individual WGM modes and interference occurs when they are 

coherently combined at the coupling point.  The second cavity pulse travels a longer path 

inside the cylinder, which causes its more complicated spectral pattern compared with the 

first cavity pulse. 

 

As shown in Fig. 3-5, the spectra of the cavity pulses cover a relatively lower frequency 

range (0.4 to 1.8 THz) compared with that of the input pulse (Fig. 3-1b), which indicates 

that the lower frequency components have stronger coupling.  This can also be seen in 

Fig. 3-3.  As a result of the strong coupling from the slab waveguide to the cylindrical 

cavity, for the main transmitted pulse, the intensities of the frequency components in the 

above range decrease significantly when the cylinder is brought into contact with the slab 

waveguide (Fig. 3-3c).  Also as we have mentioned, in the time domain, the small 

oscillations in the leading part of the main transmitted pulse contain the low frequency 

components, and are strongly suppressed in the sample scan as a result of this strong 

coupling in lower frequency range. 
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25 



 

0

2

4

6

8

10 (a)

Am
pl

itu
de

 (a
.u

.)

0.0 0.5 1.0 1.5 2.0
0

2

4

6

(b)

Frequency (THz)
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From Fig. 3-5, the energy contained in the two cavity pulses can also be compared.  If we 

take the square of the spectrum and then integrate over the frequency range from 0.0 THz 

to 2.0 THz, we obtain E1 = 8.91 for the first cavity pulse and E2 = 4.36 for the second 

cavity pulse.  Note that these numbers are not the absolute value of the energy, but only 

give relative amount of energy in the two pulses.  It is seen that the second cavity pulse 

decays dramatically compared with the first one.  It should be pointed out that this 

calculation only gives the comparison of total energy over a certain frequency range, and 

it cannot be used to calculate the Q value of the cavity. 

 

Compared with the results from other WGM-related studies [3,39], since our coupling 

source is a subps THz pulse instead of a cw wave, the coherence condition is not required 

for the coupled WGM modes in the cylindrical cavity; hence the cavity pulses cover a 

continuous frequency range, instead of the discrete frequency points. 

 

 

 

3.3 Results from Structure B 

 

The main difference between structure B and structure A is that the former has a shorter 

open window.  As mentioned in Chapter II, the pulse broadening of the main transmitted 

pulse is due to the pulse propagation in the dispersive slab TM0 mode in the open window 

area.  As the length of this open window is reduced, the broadening of the main 

transmitted pulse is also expected to be reduced.  Another difference between the two 
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structures is that, for structure B, the length of the metal plates is almost the same with 

that of the silicon slab, so the separation between the planar surfaces of the cylindrical 

lenses and the entrance and exit surfaces of the silicon slab is much closer, approximately 

0.7 mm compared with 3 mm for structure A.  This will reduce the frequency period of 

the reflection-induced spectral oscillations for the main pulses. 

 

The reference and sample scans for structure B are shown in Figs. 3-6a and 3-6b, 

respectively.  Compared with Fig. 3-2 for structure A, similar pulses appear in the two 

scans and are numbered the same way.  As expected, the broadening of the main 

transmitted pulses is significantly reduced due to the shorter propagation length in the 

dispersive slab TM0 mode in the open window area.  The main transmitted pulses now 

have a FWHM of approximately 4 ps, compared with 10 ps for structure A.  This 

reduction in pulse broadening makes it much easier for us to separate the cavity pulses 

from the reflection pulses, so that we are able to analyze the coupling properties of the 

slab-cylinder coupling structure more easily. 

 

Fig. 3-7 shows the magnifications of Fig. 3-6 for the main transmitted pulses of the 

reference and sample scans and their corresponding spectra.  In the time domain, the 

intensity of the main pulse again remains almost the same when the cylinder is brought 

into contact with the slab waveguide.  The reflection-induced spectral oscillations now 

have a frequency period of approximately 0.23 THz, corresponding to a spatial separation 

of 0.65 mm between the reflection surfaces, in excellent agreement with our experimental 

estimation of 0.7 mm for the separation between the planar surfaces of the cylindrical  
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Fig. 3-7 Main transmitted pulses and their spectra for structure B. (a) Reference

scan. (b) Sample scan. (c) Spectra of pulses (a) and (b). 
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lenses and the entrance and exit surfaces of the silicon slab.  Again the spectra show good 

single-mode propagation property for the main transmitted pulses.  The intensity drop for 

the low frequency components is clearly seen in the figure when the cylinder is brought 

into contact with the slab waveguide. 

 

Figs. 3-8a and 3-8b are magnifications of Fig. 3-6 for the first and the second cavity 

pulses CP1 and CP2, respectively.  Their respective spectra are presented in Figs. 3-9a 

and 3-9b.  The cavity pulses show similar properties as those for structure A.  However, 

since the broadening of the main transmitted pulse and therefore of the reflection pulses 

R1 is significantly reduced, we are now able to obtain a clearer scan for the cavity pulses.  

Note that the time ranges in Figs. 3-8a and 3-8b are 40 ps and 55 ps, respectively, 

compared with 25 ps and 40 ps, respectively, for the cavity pulses of structure A shown 

in Fig. 3-4.  The larger time ranges are a result of a higher signal-to-noise ratio as the 

noise from the reflection pulse is greatly suppressed. 

 

The spectral oscillations still appear in Figs. 3-9a and 3-9b due to the multimode 

composition of the WGM-THz pulse [34].  The frequency ranges for the two cavity 

pulses remain the same with those for structure A.  As expected, the small oscillations in 

the leading part of the main transmitted pulse disappear due to the strong coupling of the 

low frequency components from the slab waveguide to the cylindrical cavity, as shown in 

Figs. 3-7a and 3-7b. 
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Again, the energy contained in the two cavity pulses can be compared From Fig. 3-9.  If 

we take the square of the spectrum and then integrate over the frequency range from 0.0 

THz to 2.0 THz, we obtain E1 = 10.00 for the first cavity pulse and E2 = 9.53 for the 

second cavity pulse.  So for structure B, the two cavity pulses contain almost the same 

amount of energy, with the second pulse decaying about 4.7% compared with the first 

pulse.  Remember for structure A, this decay is about 50%.  In principle the two 

structures should give similar energy decay rate, this big difference is considered due to 

the alignment of the cylindrical cavity.  As mentioned in Chapter II, due to the holder 

problem, the cylinder for structure A may not be well aligned, resulting in this huge 

decay of the cavity pulses.  It should be emphasized that, this comparison does not give 

an accurate description of the cavity decay, as the coupling involves constructive and 

destructive interference among the WGM modes.  In fact, at some frequencies, the 

second cavity pulse even has a larger intensity than the first one, due to the interference.  

An exact evaluation of the energy decay is therefore very difficult in this case. 

 

The experimental results from the two coupling structures demonstrate the feasibility of 

the slab-cylinder structure as an effective coupling scheme for the THz WGM cavity.  In 

the theoretical part, we will give the mode solutions for the slab waveguide and the 

cylindrical WGM modes, and the coupling between the two devices will be analyzed 

numerically.  The mode solutions of the metal waveguide, the quasi-optical coupling 

between cylindrical lenses and the metal waveguide, and that between the metal 

waveguide and the slab waveguide will also be given as part of the theoretical analysis 

for this system. 
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CHAPTER IV 

MODAL ANALYSIS 

 

 

 

The propagation devices in our system include the parallel metal plate waveguide, the 

dielectric slab waveguide, and the dielectric cylindrical cavity.  Here we give the mode 

solutions for these devices, and their field profiles at selected frequencies. 

 

 

 

4.1 Mode Solutions for the Parallel Metal Plate Waveguide 

 

Fig. 4-1 shows the cross section and the coordinate system of a metal plate waveguide, 

with plate separation 2b and filling media of refractive index ng.  Since the incoming THz 

pulse is y-polarized, only the TM modes are coupled into the waveguide [37].  Assuming 

that the waveguide is infinite in x direction, and the conductivity of the metal plates is 

infinite, the normalized non-vanishing components of the TM modes are [41,42] 
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Fig. 4-1 Cross section and coordinate system of the metal plate waveguide. 
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where m = 0, 1, 2, … is the mode number and by ≤ .  For simplicity, the phase factor 

exp(iβgmz − iω t) has been omitted in the above solutions.  Here the subscript g indicates 

metal waveguide; the superscripts x, y, and z indicate the corresponding components; 

k=2πc/f  is the free-space wavenumber, where c is the speed of light in free-space, and f 

is frequency; ε0 and µ0 are free-space permittivity and permeability, respectively.  

Applying the boundary conditions, the mode propagation constant βgm is found to be 
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2
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−=

b
mknggm
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The mode is normalized in a way such that, the modal field carries unit power flow, when 

averaged by time, in the propagation direction.  The normalization factor Ngm is then 

determined by [42] 
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and is written explicitly as 
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In Eq. (4-3), the factor 1/2 comes from the time averaging; the caret ^ indicates a unit 

vector; the asterisk * denotes complex conjugate.  For later convenience we also give the 

orthogonality relation combined with the normalization relation (4-3) as (See Appendix 

A) 
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The cutoff frequency is given by [41] 

 
g

gm bn
mcf

4
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The fundamental mode, TM0 mode, is in fact a TEM mode.  It has no cutoff frequency 

and no group velocity dispersion, with both the phase velocity and the group velocity 

equal to the light speed in the filling material. 

 

The normalized field profiles for the e  field of the first three TM modes at 1.0 THz are 

presented in Fig. 4-2.  Here the separation of the metal plates is 100 µm (b = 50 µm).  It is 

worthy to point out that the field profile does not change with the filling media.  Note that 

the even modes (TEM and TM

y
g

2) are symmetric but the odd mode (TM1) is anti-
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symmetric.  When the incoming THz beam with symmetric Gaussian profile [36,37] is 

incident onto the metal waveguide, only the symmetric (even) modes are excited.  Even 

though the higher order even mode is possible to be excited, it is still subject to the 

selection of the cutoff frequency, and the profile mapping (coupling coefficient) with the 

incoming beam. 
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Fig. 4-2 Mode profiles of the first three TM modes for the metal waveguide. 
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4.2 Mode Solutions of TM Modes for Dielectric Slab Waveguide 

y 

2b ns=3.417 zx 

Fig. 4-3  Silicon slab waveguide. 

 

Fig. 4-3 shows a silicon slab waveguide with thickness 2b and refractive index ns 

surrounded by air.  Since the incoming THz beam (from the metal waveguide) is y-

polarized, only TM modes (Ex = 0, Hy = 0) are coupled into the slab waveguide.  

Although the symmetric modes of the metal waveguide only couple into even TM modes 

of the slab waveguide, the odd TM modes are also possible to be excited when coupled 

with the cylinder.  Here we give the field solutions for both the even and odd TM modes 

for the slab waveguide.  Following Snyder and Love (Tables 12-1 and 12-2 of Ref. 42), 

for even TM modes, the non-vanishing field components are 

Inside the waveguide, |y| < b, 
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outside the waveguide, |y| > b, 
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where m = 0, 2, … is the mode number, and the subscript s stands for slab.  Again the 

phase factor exp(iβsmz − iω t) has been omitted.  Other parameters in the above equations 

are defined as 

 2 2 2 2 2,   ,   m s sm m smU b k n W b k Y y/β β= − = − = b . (4-8) 

Similarly as in Eq. (4-5), the normalization and orthogonality relation is 
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The normalization factor is given explicitly as 
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Applying the boundary conditions, with the help of Eq. (4-8), the propagation constant 

βsm can be solved from the following eigenvalue equation 

 2 tans m mn W U U= m . (4-11) 

 

On the other hand, for odd TM modes, the non-vanishing components of the fields are 

Inside the waveguide, |y| < b, 
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outside the waveguide, |y| > b, 
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where m = 1, 3, …  The mode parameters and the normalization factor are defined the 

same as in Eqs. (4-8) and (4-10).  Applying the boundary conditions, the eigenvalue 

equation for solving βsm is given as 

 2 cots m mn W U U= − m . (4-13) 

 

The cutoff frequency for the individual TM mode is given by [41,42] 
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sm
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mcf
b n

=
−
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where m = 0, 1, 2, …  Note that the fundamental TM0 mode has a zero cutoff frequency. 

 

There are infinite solutions (modes) to Eq. (4-11) and (4-13).  The mode is numbered by 

m, which is the number of zeros inside the slab in the field pattern of its transverse 

components along y-direction, with TM0 having no zero point and TM1 having one.  The 
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normalized field patterns of TM0, TM1 and TM2 modes at f = 0.75 THz and f = 1.5 THz 

for 2b = 100 µm silicon slab waveguide are shown in Fig. 4-4, where the edges of the slab 

are indicated by dotted straight lines.  According to Eq. (4-14), the cutoff frequencies for 

these modes are fs0 = 0 THz, fs1 = 0.46 THz, and fs2 = 0.92 THz, respectively, so TM2 mode 
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Fig. 4-4  Normalized field patterns of TM0, TM1 and TM2 modes for 0.1 mm

silicon slab waveguide. (a) Ey at 0.75 THz; (b) Ez at 0.75 THz; (c) next page: Ey at

1.5 THz; (d) next page: Ez at 1.5 THz.  Solid: TM0 mode; Dashed: TM1 mode;

Dotted: TM2 mode.  The edges of the waveguide are indicated by the dotted lines.

The cutoff frequency for TM2 mode is above 0.75 TH, so TM2 mode is not shown

in (a) and (b). 
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is forbidden at 0.75 THz.  Note that according to Eqs. (4-7a) and (4-7b),  and  have 

a phase difference of π /2.  Fig. 4-4 only shows the real part of  and the imaginary part 

of . 
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Fig. 4-4  Normalized field patterns of TM0, TM1 and TM2 modes for 0.1 mm

silicon slab waveguide. (c) Ey at 1.5 THz; (d) Ez at 1.5 THz.  Solid: TM0 mode;

Dashed: TM1 mode; Dotted: TM2 mode.  The edges of the waveguide are

indicated by the dotted lines. 
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4.3 Mode Solutions of Cylindrical WGM Modes 

 

r 
θ 

x

nc 

2a 

Fig. 4-5 Cross section of the dielectric cylinder and its coordinate system. 

Fig. 4-5 shows the cross section of the cylinder of radius a with refractive index nc 

surrounded by air.  Again, only the modes with Ex = 0 and Hθ = 0 are excited during the 

coupling process due to the polarization of the incoming THz pulse.  In the literature, 

WGM modes with such a polarization are denoted as WGE modes [43,44], which means 

transverse electric (viewed from the longitudinal direction) WGM modes.  In our system, 

the propagation is along the θ direction, and the mode is transverse magnetic (viewed 

from θ direction) since Hθ = 0.  However, to avoid this ambiguity, we will just use WG to 

denote the WGM modes in our coupling system. 

 

In the coordinate system shown in Fig. 4-5, the non-vanishing components of the field 

solutions of the WG modes can be written as [45] 

Inside the cylinder, (r < a) 
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Outside the cylinder, (r > a) 
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where the superscripts x, r, and θ  indicate the corresponding components, Jl is the Bessel 

function of the first kind of order l,  is the Hankel function of the first kind of order l, 

and the prime (') denotes the differentiation with respect to the argument inside the 

parentheses.  Here l is essentially the angular propagation constant for the specific WG 

mode.  Again, the phase factor exp(ilθ − iω t) has been omitted.  The normalization factor 

N

)1(
lH

cm is determined by 
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No analytical form is available for Ncm and it can only be evaluated numerically. 

 

Applying the boundary conditions, we get the following eigenvalue equation, 
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or equivalently, 
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where Uc = knca and Qc = ka.  The WGM modes are leaky modes in nature [42], so the 

eigenvalues Uc are complex.  In our case, the imaginary part of Uc is very small and can 

be neglected, so the WGM modes are essentially bound modes. 

 

Solving the eigenvalue equation (4-17), we obtain a set of solutions, with each solution 

corresponding to a WGM mode.  A cylindrical WGM mode is usually indexed by three 

numbers: angular index l (the angular propagation constant), radial index m (the number 

of zeros of the transverse field component in radial direction, should always be an 

integer), and axial index h (the propagation constant in axial direction).  In our case, we 

assume that the cylinder is longitudinally infinite, and there is no wave propagation along 

the axial direction, so we can set h = 0.  In the case of cw coupling source, l should be an 

integer as required by the coherence condition, corresponding to a discrete set of resonant 

frequencies.  In our case, since the coupling source is a subps THz pulse, the coherence 

condition is not required so l can be continuous, corresponding to a continuous frequency 

range which can be coupled into the cylinder.  There are two ways to solve Eq. (4-17): (a) 

given l solve for the eigen-frequencies; (b) given frequency solve for l.  Method (a) is 

usually used in the case of cw coupling source to calculate the resonant frequencies of a 

specific cavity resonator, where l is given as an integer as required by the coherence 

condition.  In this case, one l corresponds to a discrete set of resonant frequencies, with 

46 



each numbered by the number of zeros in the field pattern in the radial direction.  As an 

example, Fig. 4-6 shows the field patterns of the first five WG modes for a silicon 

cylinder with radius a = 2.5 mm.  Here l = 200, and the radial number m and its 

corresponding resonant frequency for each mode are also indicated in the figure. 
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Fig. 4-6  Er field profiles for WG modes of a silicon cylinder with radius a =

2.5 mm.  Here l = 200 and the radial indexes m = 1, 2, …5.  The corresponding

frequencies are also given.  The straight dotted line represents the rim of the

cylinder. 
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For our case with subps THz pulses as coupling source, method (b) is used to solve Eq. 

(4-17).  For each given frequency, a set of solutions for l is obtained and numbered the 

same way as in method (a).  This method is in fact analogous to that in Sec. 4.2, where 

the frequency was given to solve for the propagation constant for the slab modes.  Here 

the solutions of l are generally non-integers.  Fig. 4-7 shows the normalized field profiles 

of  and  components at 0.5 THz and 1.0 THz for a silicon cylinder with radius a = 

2.5 mm.  The figure shows the first five WG modes (m = 1…5) with their corresponding l 

values. 

r
ce θ

ce

 

As discussed earlier, the cylindrical WGM modes are specified by three numbers l, m and 

h.  For our case, the angular number l is a solution to the eigenvalue equation determined 

by the frequency and radial number m, and h is assumed to be 0, leaving m the only 

number to specify a mode.  From now on, we will use WGm to indicate the WG mode 

with radial number m, and its corresponding angular number will be written as lm. 
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Fig. 4-7  Normalized field patterns for the first 5 WG modes for the 5-mm

silicon cylinder.  (a) Er at 0.5 THz; (b) Eθ at 0.5 THz; (c) next page: Er at 1.0

THz; (d) next page: Eθ at 1.0 THz.  The straight dotted lines indicate the surface

of the cylinder. 
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Fig. 4-7  Normalized field patterns for the first 5 WG modes for the 5-mm

silicon cylinder.  (c) Er at 1.0 THz; (d) Eθ at 1.0 THz.  The straight dotted lines

indicate the surface of the cylinder. 
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CHAPTER V 

COUPLED MODE THEORY 

 

 

 

The coupled mode theory (CMT) is widely used in analyzing the coupling between 

coupled waveguide systems.  In this theory, the variations of the modal amplitudes of the 

coupled waveguides with propagation distance are described by several differential 

equations, called coupled mode equations, which should be solved simultaneously in 

order to obtain the amplitude and phase change information of the coupled waveguide 

modes.   The CMT dealing with the coupling between two parallel straight waveguides 

has been addressed in the literature [46-50].  It is worthy to point out that early 

derivations of CMT, such as those in [47,48], do not conserve energy during the coupling 

process.  An exact formulation of CMT for parallel straight waveguides can be found in 

Ref. 49, where the author also gives the proof of power conservation during the coupling 

process. 

 

For non-parallel waveguides, several modified forms of CMT are also available to 

analyze the coupling [51-53].  An exact formulation of CMT in these systems is difficult 

to obtain, and approximations have to be used in these derivations.  For the coupling of 
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WGM resonators, the modified CMT is often used to analyze the coupling from the 

couplers to the WGM resonators [53,54].  In these analyses, the CMT for straight 

waveguide system were modified to calculate the coupling between a straight waveguide 

and the curved WGM resonator.  We could also use the above modified CMT to analyze 

the slab-cylinder coupling structure, however, we think that it is of theoretical interest to 

derive the CMT for the cylindrical coordinate system, and then modify this theory for the 

slab-cylinder structure. 

 

Up to now, a complete derivation of CMT for the cylindrical coordinate is not available 

in the literature.  In Ref. 53, the authors gave the derivation for the coupling between a 

dielectric ring and a dielectric disk, which can also be used for the coupling between 

concentric cylindrical systems.  However, they used unnecessary approximation in the 

derivation, which made the final results questionable (See Appendix B).  In this chapter, 

we will give the complete derivation of the CMT in the concentric cylindrical coordinate, 

and then modify this theory for the slab-cylinder structure. 

 

 

 

5.1 Reciprocity Relation in Cylindrical Coordinates 

 

Consider two sets of field solutions (E1, H1, J1) and (E2, H2, J2) in two different media 

with spatial relative permittivities ε1(r, θ ) and ε2(r, θ ) which satisfy the Maxwell’s 

equations and boundary conditions.  Here E, H, and J denote electrical field, magnetic 
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field, and current density, respectively.  We assume an implicit time dependence 

exp(−iω t) in the field vectors and the current density.  The spatial relative permittivities 

are related with the refractive indexes by 

 . (5-1) ),(),( 2
2,12,1 θθε rnr =

For simplicity we assume that the media are non-absorbing so ε1 and ε2 are all real, and 

the permeability is taken to have the free-space value µ0.  The Maxwell’s equations can 

be expressed in the form 

 2,1
0

0
2,1 HE

ε
µik=×∇ , (5-2a) 
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0
2,12,12,1 EJH

µ
εεik−=×∇ . (5-2b) 

Here k, ε0, and µ0 are wavenumber, permittivity, and permeability, respectively, all in 

free-space.  From vector identities and Maxwell’s equations, it is easy to obtain the 

following relation [42] 
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Here the asterisk * denotes complex conjugate.  If we apply the above relation to an 

infinitesimal section ∆θ of a cylindrical geometry which is invariant in the θ and y 

directions, we obtain the conjugate form of the reciprocity relation [42] in cylindrical 

coordinates (See Appendix B) 
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where the caret ^ indicates a unit vector.  For completeness the unconjugated form of the 

reciprocity relation is also given here [42] 
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0 )( rdrdrrik JEJEEEεε
µ
ε ) . (5-5) 

The unconjugated form of the reciprocity relation for source-free system (J1 = J2 = 0) has 

been derived in Ref. 53.  However, the authors used unnecessary approximation so the 

final form is different from (5-5).  See Appendix B for details. 

 

In general the current densities J1 and J2 do not appear in the coupling system.  However, 

these quantities are useful in the physical understanding of the coupling, as will be seen 

in Appendix D. 

 

 

 

5.2 Coupled Mode Equations in Cylindrical Coordinates 

 

Now we apply the reciprocity relation (5-4) to the coupling between two hollow cylinders 

(hereafter called ring a and ring b) with their cross section shown in Fig. 5-1.  The 

current densities J1 and J2 will be set to zero, as we will be dealing with a source-free 

coupling system.  As shown in Fig. 5-2, we suppose the functions ε a ( r,θ ) and ε b ( r,θ ) 

represent the variation in the relative permittivities when only ring a and ring b are 

present, respectively, i.e., 
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Fig. 5-1 Concentric rings coupling configuration. 
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Fig. 5-2 Relative permittivities for the coupling configuration shown in Fig. 5-1.

55 



 






∈

∈
=

cladding  thein ;

rings  the within;
),(

0

,

,

ba

ba r θε  (5-6) 

where ε a ( r,θ ) = ∈0 (not ∈a) in the region ring b occupies and vice versa.  The function 

εT ( r,θ ) represents the relative permittivity when both rings exist simultaneously.  

Following the general procedures of deriving coupled mode equations [42,49,53], we first 

give the modal fields for the isolated rings, and then form the total fields of the coupling 

system by modal expansion of the modal fields.  The guided modes are 
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where the superscripts t and θ indicate the transverse and θ components, respectively, and 

the lower case e (e) and h (h) represent the normalized fields. 

 

The total coupled fields (ET , HT) can be formed by modal expansions in terms of the two 

guided modes in rings a and b as follows [42,49,53].  For the transverse components, 
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where a(θ ) and b(θ ) are the modal amplitudes for the two modal fields.  The longitudinal 
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components of the fields follow from Maxwell’s equations in the cylindrical coordinates 

(see Appendix C) 

)()()()(),( rEbrEarE b
T
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θθθ

ε
εθ

ε
εθθ +=  

)exp(),()()exp(),()( θβθ
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ε
εθ θθ

bb
T

b
aa

T

a irebirea += , (5-9a) 

)()()()(),( rHbrHarH baT
θθθ θθθ +=  

)exp(),()()exp(),()( θβθθθβθθ θθ
bbaa irhbirha += . (5-9b) 

 

For the purpose of deriving coupled-mode equations, two sets of electromagnetic fields 

are necessary to use the reciprocity relation (5-4).  We choose the total coupled fields 

shown in (5-8)-(5-9) as the first set of solutions.  For the second set, we choose individual 

modal fields as shown in (5-7a) and (5-7b). 

 

Case I: We choose 

 ε1(r,θ ) = εT(r,θ ), ε2(r,θ ) = εa(r,θ ), (5-10) 

and 

 , )

)

,(ˆ),(),(),(1 θθθθθ θ rErrr T
t
TT +== EEE

 , ,(ˆ),(),(),(1 θθθθθ θ rHrrr T
t
TT +== HHH

 , ),(ˆ),(),(),(2 θθθθθ θ rErrr a
t
aa +== EEE

 . (5-11) ),(ˆ),(),(),(2 θθθθθ θ rHrrr a
t
aa +== HHH

We obtain from (5-4) 
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 [ ] )()()()( θθθθ
θ

biCaiCbMaM
d
d

abaaabaa +=+ , (5-12) 

where M and C are coupling coefficients and will be defined later in (5-16a) and (5-16b). 

 

Case II: We choose 

 ε1(r,θ ) = εT(r,θ ), ε2(r,θ ) = εb(r,θ ), (5-13) 

and 

 , )

)

,(ˆ),(),(),(1 θθθθθ θ rErrr T
t
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t
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Again we obtain from (5-4) 
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The coupling coefficients in Eqs. (5-12) and (5-15) are defined as 
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where 

 ),(),(),( θεθεθε rrr pTp −=∆ , 

 θβθβθθθ pqpqpq rrr −=Φ−Φ=∆Φ ),(),(),( . (5-17) 

Note that by definition of the normalization factor (4-16) 
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 Maa = Mbb = 1. (5-18) 

Eqs. (5-12) and (5-15) are the coupled mode equations for the coupling between the rings 

a and b.  A physical derivation of the coupled mode equations is shown in Appendix D. 

 

In the derivation, we did not use any approximation, so the coupled mode equations      

(5-12) and (5-15) are exact for the concentric cylindrical waveguides.  Here we deal with 

the coupling between two concentric rings, however, the same set of equations can also 

be used for the coupling between a ring and a cylinder, or other similar structures, as long 

as the coupled devices are concentric with circular symmetry. 

 

 

 

5.3 Coupled Mode Equations for Slab-Cylinder System 

 

Now we modify the coupled mode equations for our slab-cylinder coupling structure.  As 

shown in Fig. 5-3, there exist relations between the cylindrical coordinate system of the 

cylinder and the Cartesian coordinate system of the slab 

 y = r cosθ − (a+b), z = r sinθ . (5-19) 

We use the subscripts s and c to indicate slab and cylinder, respectively.  The modal 

fields of the slab and cylinder are 

 [ ] )exp(),(ˆ),(),( zirerr s
t
ss βθθθθ θ+= eE , 

 [ ] )exp(),(ˆ),(),( zirhrr s
t
ss βθθθθ θ+= hH , (5-20a) 

 [ ] )exp(),(ˆ),(),( θθθθθ θ ilrerr c
t
cc += eE , 
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Fig. 5-3 Cross section and coordinate systems of the slab-cylinder coupling

structure. 

 [ ] )exp(),(ˆ),(),( θθθθθ θ ilrhrr c
t
cc += hH , (5-20b) 

where β is the propagation constant of the slab mode, and l is the angular propagation 

constant for the WGM mode.  In our case, the normalized fields of the slab TM mode and 

cylindrical WG mode can be expressed in the cylindrical coordinates as 
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θθ θ =
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 0 . (5-21b) ),( =θθ rhc
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Similarly as in (5-8)-(5-9), we form the total fields as 






 += θθ
ε
εθβθ θ ˆ),(),()exp()(),( rErzizar s

T

st
ssT EE  

 




 ++ θ
ε
εθθ θ ˆ)()()exp()( rErila c

T

ct
cc E , (5-22a) 

[ ]θθθβθ θ ˆ),(),()exp()(),( rHrzizar s
t
ssT += HH  

 [ ]θθθ θ ˆ)()()exp()( rHrila c
t
cc ++ H . (5-22b) 

Note that the modal amplitude of slab as(z) is a function of z instead of θ.  For simplicity, 

we use as(θ ) to approximate as(z) where 

 z = (a+b)sinθ . (5-23) 

If we use this field for the first set of solution, and the individual modal fields shown in 

Eqs. (5-20a) and (5-20b) as the second set of solution, we obtain the same coupled mode 

equations as Eqs. (5-12) and (5-15).  The coupling coefficients are still defined by Eqs. 

(5-16a) and (5-16b), except now ( p, q) = (s, c), ∆Φpq(r,θ ) = Φq(r,θ ) − Φp(r,θ ), where 

Φs(r,θ ) = βs(r,θ ), and Φc(r,θ ) = lθ .  Similarly as in Eq. (5-18), we have 

 Mss ≈ Mcc = 1.  (5-24) 

 

Eqs. (5-12) and (5-15) are the coupled mode equations for the coupling between a single 

slab mode and a single cylindrical WGM mode.  Now if we have N modes (each mode 

may be either a slab mode or a cylinder mode) coupling together in the system, it is easy 

to derive the multimode coupling equations, with the mth one (m = 1... N ) written as 

 ∑∑
==

=
N

n
nmn

N

n
nmn aCiaM

d
d

11

)()()()( θθθθ
θ

, (5-25) 
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where an is the modal amplitude of the n th mode, and Mmn and Cmn are coupling 

coefficients defined in Eqs. (5-16a) and (5-16b). 

 

For our slab-cylinder system, the modes involved are: single slab TM0 mode (with modal 

amplitude denoted by as), and the WG modes (with modal amplitudes denoted by a1, a2, 

…, for simplicity, hereafter we use numbers to indicate individual WG modes).  Since the 

WG modes are orthogonal to each other, the coefficients Mmn ≈ 0 and Cmn ≈ 0 if m and n 

refer to different WG modes.  This leaves the following coupled mode equation: 
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and N is the number of the coupled WG modes in the system. 
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If we consider the coupling between a single WG mode and the slab TM0 and TM1 

modes, the coupling coefficient matrices will be 
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where the subscripts c, s0, and s1 denote the WG mode, and the slab TM0 and TM1 

modes, respectively. 
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CHAPTER VI 

NUMERICAL RESULTS 

 

 

 

6.1 Quasioptic Coupling 

 

As stated in Chapter II, the THz beam is coupled into the metal plate waveguide by a 

plano-cylindrical lens.  For the quasi-optic calculation of this coupling, we assume that 

the incoming THz beam propagates in the fundamental Gaussian mode, and the entrance 

side of the metal waveguide is located at the beam waist of the incident beam [36,37].  A 

quasioptic calculation of the coupling coefficient is shown in Appendix E.  We now use 

Eqs. (E-13) and (E-14) to calculate the coupling between the modes in our system. 

 

The y-polarized incoming Gaussian THz beam, with a waist of 200 µm [36], is incident 

onto the parallel metal plate waveguide with plate separation 2b = 100 µm, and couples 

into its even TM modes [37].  For structure A, the THz pulse is first coupled into the air-

filled metal guide.  With a cutoff frequency of 3.0 THz for TM2 mode, which is at the 

upper side of the spectral range of the system, the THz pulse couples into the single TEM 

mode of the air-filled metal plate waveguide.  This pulse in turn couples into the same 
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TEM mode of the silicon-filled metal plate waveguide, so for structure A, the THz pulse 

propagates in the single TEM mode in the metal plate waveguide. 

 

For structure B, the length of the air-filled part of the metal plate waveguide is very small 

(~0.25 mm), so we assume that the THz pulse directly couples into the silicon-filled 

metal plate waveguide.  The amplitude coupling coefficient, ap, is calculated for the 

TEM, TM2, and TM4 modes of the silicon-filled metal waveguide, and the results are 

plotted in Fig. 6-1.  The incoming Gaussian beam couples dominantly into the TEM 
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Fig. 6-1  Amplitude coupling coefficients for the coupling from Gaussian beam

into the even TM modes of the silicon-filled metal plate waveguide. 
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mode of the metal guide; other coupled modes, TM2 and TM4, have amplitude coupling 

coefficients of approximately 7% and 1.5% of that for the TEM mode, respectively, 

showing the very good single-mode propagation property for the coupled THz pulse 

inside the metal plate waveguide. 

 

The next coupling occurs at the interface of the metal plate guide and the dielectric slab 

guide.  Again only the even TM modes of the slab guide are excited.  Following the same 

procedure, we calculate the overall amplitude coupling coefficient for the coupling from 

the metal TEM mode into the slab TM0 and TM2 modes.  The results are plotted in Fig. 

6-2.  To our surprise, it is in fact not a single-mode propagation for the THz pulse in the 

slab waveguide, as the TM2 mode has an amplitude of approximately 30% of that for the 

dominant TM0 mode above 1.5 THz.  Nevertheless, the detected THz pulse shows good 

single-mode propagation property, as seen in Figs. 3-3 and 3-7.  This is actually the 

combination results of the input and output couplings.  The overall coupling coefficient, 

|ap|2, is also plotted in Fig. 6-2.  Now the modal amplitude of TM2 mode is less than 10% 

of that of the TM0 mode, or less than 1% if comparing the energy carried by the two 

modes.  Since the coupling between the TM2 mode and WGM modes is very weak, as we 

will see later, the multimode feature of the THz pulse in the slab waveguide will not 

affect our analysis based on a single-mode propagation assumption in the slab 

waveguide. 

 

As a conclusion to this section, here is the overall picture of the coupling and modes in 

our coupling structures without the cylinder in presence:  the input Gaussian THz beam 
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couples dominantly into the TEM mode of the metal plate waveguide; the TEM mode of 

the metal guide couples into the TM0 and TM2 modes of the silicon slab waveguide.  

Even though the coupled TEM mode contains the contribution from the slab TM2 mode, 

since this contribution is mainly above 1.5 THz, which is beyond the frequency range of 

our WGM THz pulses, we still view the detected main pulse as a single-mode pulse.  

This conclusion will be used to continue the analysis on the coupling system. 
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Fig. 6-2  Amplitude coupling coefficients for the coupling between the TEM

mode of the silicon-filled metal guide and the TM0 and TM2 modes of the

silicon slab waveguide. 
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6.2 Dispersion and Phase Match 

 

In order to get a strong coupling, the phase velocity of the slab mode should be very close 

to that of the WGM mode in the coupling region [4-9], as required by the definition of 

coupling coefficients in Eqs. (5-16a) and (5-16b).  For convenience, we define the 

effective refractive indexes 

 
f
fc

f
cfn m

sm
sm π

β
υ 2

)(
)(

)( == , (6-1) 

for the slab TMm mode, and 

 
af
fcl

f
cfn m

cm
cm πυ 2

)(
)(

)( == , (6-2) 

for the WGm mode [55], where υsm and υcn are the phase velocities for slab TMm mode 

and cylindrical WGm mode, respectively, and other parameters have the same meanings 

as in Chapter IV.  In Eq. (6-2), we used the phase velocity at the rim of the cylinder to 

define the relative refractive index for the individual WG mode.  Fig. 6-3 shows the 

effective refractive indexes for the slab TM0, TM1, and TM2 modes, and the first 8 WG 

modes.  It is seen from Fig. 6-3 that the TM0 and TM1 modes have a large frequency 

range of phase matching with the WG modes, while the TM2 mode only matches the WG 

modes at the higher end of our experimental frequency range.  We expect that at the 

vicinity of the intersection points the coupling will be strong between the corresponding 

modes, which means that we shall get a strong coupling between the WG modes and the 

TM0 and TM1 modes. 
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The slab TM1 mode excited by the cylindrical WG modes will couple into the odd modes 

of the metal plate waveguide, but due to its anti-symmetric feature, it will not be detected 

by the THz receiver [34].  However, we will still need to evaluate its effect on the 

coupling between the WG modes and the TM0 mode. 
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Fig. 6-3 Effective refractive indexes of the slab TM modes and the cylindrical

WG modes. 
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6.3 Coupling Coefficients 

 

Putting the integrals in Eqs. (5-16a) and (5-16b) into practice, we show in Figs. (6-4) and 

(6-5) the coupling coefficients Csc and Msc for WG1, WG3, WG5, and WG7 modes when 

coupled with slab TM0 and TM1 modes, and at various frequencies.  To keep the figures 

simple and easy to read, the results for the even modes WG2, WG4, WG6, WG8 are not 

included in the plots.  For convenience, the contents of the figures are listed here: 

 

Fig. No. Slab Mode Coefficient Frequency 

Figs. 6-4a,b TM0 Csc 0.6 THz 

Figs. 6-4c,d TM0 Msc 0.6 THz 

Figs. 6-4e,f TM0 Csc 1.0 THz 

Figs. 6-4g,h TM0 Msc 1.0 THz 

Figs. 6-5a,b TM1 Csc 1.0 THz 

Figs. 6-5c,d TM1 Msc 1.0 THz 

Figs. 6-5e,f TM1 Csc 1.5 THz 

Figs. 6-5g,h TM1 Msc 1.5 THz 

 

Note that by definition, Msc has a dimension of 1/angle.  Unlike the concentric rings case, 

the slab-cylinder coupling structure gives the complex coupling coefficients varying with 

propagation length (here angle θ ) except at the contact point (θ = 0) where all the 

parameters are real.  All the coupling coefficients have their largest value at the contact 

point and decay with increasing angle.  At lower frequencies, the evanescent portion of 

the guided field is larger, which results in the slower decay of the coupling coefficients 

with increasing angle, indicating a larger coupling range. 
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Fig. 6-4 Coupling coefficients for Csc and Msc for the slab TM0 mode and WG1,

WG3, WG5 and WG7 modes at 0.6 and 1.0 THz. 
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Fig. 6-5 Coupling coefficients for Csc and Msc for the slab TM1 mode and WG1,

WG3, WG5 and WG7 modes at 1.0 and 1.5 THz. 
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The oscillations in the coupling coefficients are related to the phase match condition 

between the specific slab mode and the WG mode (see Fig. 6-3).  At 0.6 THz, WG1 mode 

has the largest mismatch, while WG5 has the closest phase velocity with TM0 mode, 

therefore the coupling coefficients for WG1 mode has the most oscillations, while those 

for the WG5 mode do not show any oscillation feature (Figs. 6-4a,b,c,d).  For TM1 mode, 

the phase match condition is better satisfied at 1.5 THz, so the coupling coefficients show 

fewer oscillations (Figs. 6-5e,f,g,h) than those at 1.0 THz (Figs. 6-5a,b,c,d).  The 

oscillations in the coupling coefficients are usually related with destructive interference, 

resulting in a small overall coupling result. 

 

As mentioned in Appendix D, Msc represents the projection of a WG mode to a slab 

mode, which is related to the overlap integral of the two modes.  Since the slab and the 

cylinder are physically apart from each other, it is expected that this projection coefficient 

is far less than 1, which is true as shown in Figs. 6-4c,d,g,h, and Figs. 6-5c,d,g,h.  In fact, 

in many early derivations of the coupled mode theory, Msc was simply neglected [42, 46-

48,51,52]. 

 

 

 

6.4 Coupling from Slab to Cylinder: Single Mode Coupling 

 

As described earlier, the THz pulse propagates dominantly in the TM0 mode in the slab 

waveguide.  In the slab-cylinder contact area, this pulse couples into the cylinder as a 
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composition of the cylindrical WG modes.  Though this coupling is simultaneously into 

several WG modes, for simplicity, we first analyze the coupling as a single mode case, 

i.e., we calculate the coupling from the dominant TM0 mode into the individual WG 

mode separately.  The coupling from the TM2 mode is ignored in the calculation due to 

its large phase velocity discrepancies with the WG modes and therefore the small 

coupling. 

 

The 4th order Runge-Kutta method [58] (see Appendix F) is used to numerically solve the 

coupled mode equations (5-12) and (5-15).  In the calculation we set the initial modal 

amplitudes asi(ω) = 1 for the slab TM0 mode, and ami(ω) = 0 for the WG modes, where the 

subscript m is the WG mode index, and the subscript i indicates the initial value.  We call 

this “slab excited” case as shown in Fig. 6-6a.  Fig. 6-7 shows the absolute value of the 

modal amplitude evolution for the coupling from slab TM0 mode to WG1, WG3, and WG5 

modes during the coupling process at 0.6 THz and 1.0 THz.  Again to keep the figures 

simple and easy to read, results for the even WG modes are not included in the plots.  It is 

clearly seen that most of the coupling occurs at the vicinity of the slab-cylinder contact 

point as the two fields have the greatest overlap in this region.  For lower frequency, the 

coupling region is larger as the modal fields expand more in the cladding region and 

decay more slowly as the angle increases.  The oscillations in the modal amplitude of 

WG mode correspond to the oscillations in the coupling coefficients (see Figs. 6-4e,f ) 

owing to the phase mismatch between the two modes. 

 

 

74 



 

y 

s
sma

s
cma

(a) 

asi =1 

  acm(θ ) 

as(θ ) 

z 

θ 

x 

r 

y 

acmi =1

c
sma

c
cma

(b) 

ac(θ ) 

as(θ ) 

z 

θ 

x 

r 

Fig. 6-6  Excitation and coupling diagram for the slab-cylinder coupling

structure.  (a) Slab excited case.  (b) Cylinder excited case.  

75 



 

-20 -10 0 10 20
0.0

0.2

0.4

0.6

0.8

1.0

(b)

  1.0 THz
Top: TM0 Amps
Bottom: WG Amps

 TM0 to WG1
 TM0 to WG3
 TM0 to WG5R

el
at

iv
e 

Am
pl

itu
de

Angle (degrees)

0.0

0.4

0.8

1.2

(a)

 

 

  0.6 THz
Top: TM0 Amps
Bottom: WG Amps

 TM0 to WG1
 TM0 to WG3
 TM0 to WG5

R
el

at
iv

e 
Am

pl
itu

de

Fig. 6-7  Amplitude evolution of the coupling from TM0 to WG1, WG3 and WG5

modes in the case of single mode coupling at (a) 0.6 THz and (b) 1.0 THz. 

76 



The above calculation is conducted over the frequency range from 0.3 THz−3.0 THz, and 

we obtain the complex frequency-dependent final coupled modal amplitudes  and 

, with their amplitude parts shown in Fig. 6-8 for the TM

)(ωs
sma

)(ωs
cma 0 mode and the WG1 to 

WG8 modes.  Here the superscript s indicates “slab excited” case.  As the index of the 

WG mode increases, the overall coupling spectrum profile goes to the lower frequency 

end, which is consistent with the phase matching result shown in Fig. 6-3.  Below 0.4 

THz, the coupling results show strange structures, which may be a result of the 

approximation (5-23) where we used an amplitude with θ -dependency to represent a 

modal amplitude with z-dependency.  This is a good approximation at higher frequencies 

as the field is well confined inside the slab, and hence the coupling range is much 

smaller.  At lower frequencies, as the evanescent portion of the field has more weight 

over the entire field pattern, this approximation tends to give larger error as the coupling 

range increase dramatically.  Since the experimental spectra of the cavity pulses shown in 

Chapter III cover a frequency range above 0.4 THz, the overall calculation results will 

not be affected by the results at the lower frequency end. 

 

In principle the power should be conserved during the coupling process.  In the straight 

parallel waveguide coupling system, the total power evolution during the coupling 

process can be evaluated exactly and hence proved conserved [49].  However, in our 

system, an exact formulation of the power evolution is not readily available.  We can 

calculate the total power after coupling as the summation of the square of the modal 

amplitudes, which should be equal to 1, the input power.  Fig. 6-9 shows the total power 

after coupling for the single mode coupling from TM0 to the first 8 WG modes.  At above  
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Fig. 6-8  Single mode coupling results for the coupling from TM0 to first 8 WG

modes.  Solid: TM0 amplitudes; Dashed: WG amplitudes. 
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0.6 THz, the calculated total power is within 5% of the power conservation level.  

However, at lower frequencies, the calculated total power is well off from the input 

power, which is 1, indicating a bad accuracy of the calculation at lower frequencies. 
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Fig. 6-9  Total power after coupling for the single mode coupling from TM0 to

the first 8 WG modes. 
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6.5 Coupling from Cylinder to Slab and the Effect of TM1 Mode 

 

The coupled WGM THz pulse will propagate around the cylinder continuously.  When 

this pulse arrives at the slab-cylinder contact region, the coupling from the cylinder to the 

slab occurs.  For simplicity, we first assume that only a single TM0 mode is excited inside 

the slab by the WG modes.  Again the 4th order Runge-Kutta method is used to solve the 

coupled mode equations (5-12) and (5-15).  In the calculation we set the initial modal 

amplitudes asi(ω) = 0 for the slab TM0 mode, and ami(ω) = 1 for the WG modes, as shown 

in Fig. 6-6b.  We call this “cylinder excited” case.  We obtain the complex final coupled 

modal amplitudes a  and , and show their amplitude parts in Fig. 6-10 for 

the TM

)(ωc
sm )(ωc

cma

0 mode and the first 8 WG modes, for the frequency range from 0.3 THz−3.0 THz.  

Here the superscript c indicates “cylinder excited” case.  Again the overall coupling 

spectrum profile moves to the lower frequency end as the index of the WG mode 

increases. 

 

In a similar way the total power after coupling is calculated for the coupling from 

individual WG modes into the slab TM0 mode.  The results are shown in Fig. 6-11.  

Again the calculation gives good power conservation at high frequencies, and the theory 

seems invalid at lower frequencies. 

 

Although the TM1 mode is not excited in the slab waveguide by the preceding metal plate 

guide, it is possible to be excited during the coupling between the slab and the cylinder.  

This coupling is neglected in the calculation of the coupling in the slab excited case in the  
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Fig. 6-10  Single mode coupling results for the coupling from first 8 WG modes

to TM0 mode.  Solid: TM0 amplitudes; Dashed: WG amplitudes. 
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previous section, since the TM1 can only be excited by the WG modes and therefore this 

coupling is a second order effect.  However, in the cylinder excited case, the TM0 and 

TM1 modes are excited simultaneously by the WG modes, if possible, and the coupling 

into the TM1 mode may affect the coupling result into the TM0 mode.  Figs. 6-12 and 

6-13 show the amplitude evolution and phase change of the modes during the coupling 

process when only TM0 mode is considered, at 1.0 THz and 1.5 THz, respectively.  For 

comparison, we plot in Figs. 6-14 and 6-15 the results when both TM0 and TM1 are 

considered for 1.0 THz and 1.5 THz, respectively.  The phase change for the TM1 mode  
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Fig. 6-11  Total power after coupling for the single mode coupling from WG

modes to slab TM0 mode. 
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Fig. 6-12 (a) Amplitude and (b) phase change for coupling from WG modes to

TM0 mode at 1.0 THz.  The phase changes for the TM0 mode in (b) have been 

shifted by integer numbers of 2π so that they fall in the range from –π—π at the 

end of the coupling. 
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Fig. 6-13 (a) Amplitude and (b) phase change for coupling from WG modes to

TM0 mode at 1.5 THz.  The phase changes for the TM0 mode in (b) have been

shifted by integer numbers of 2π so that they fall in the range from –π—π at the

end of the coupling. 
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Fig. 6-14 (a) Amplitude and (b) phase change for coupling from WG modes to

TM0 and TM1 modes at 1.0 THz.  The phase changes for the TM0 mode in (b)

have been shifted by integer numbers of 2π so that they fall in the range from

–π—π at the end of the coupling.  The phase change for the TM1 mode is not

plotted. 
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Fig. 6-15 (a) Amplitude and (b) phase change for coupling from WG modes to

TM0 and TM1 modes at 1.5 THz.  The phase changes for the TM0 mode in (b)

have been shifted by integer numbers of 2π so that they fall in the range from

–π—π at the end of the coupling.  The phase change for the TM1 mode is not

plotted. 
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is not included in the figures.  The calculation is achieved by using the coupled mode 

equations for multimode case (Eq. (5-26) with (5-28)).  Though the coupling into the 

TM1 mode is strong as shown in Figs. 6-14 and 6-15, neither the amplitude nor the phase 

has significant change for the TM0 mode when compared with Figs. 6-12 and 6-13.  The 

WG modes are not depleted much during the coupling process, so that the coupling from 

WG modes into the TM0 and TM1 modes can be viewed as separate couplings and no 

cross coupling occurs between the slab modes.  This explains why the TM1 mode does 

not affect the coupling of TM0 mode.  Thus, we can neglect the effect of TM1 mode in the 

calculation of the coupling. 

 

 

 

6.6 Transfer Functions for Cavity Pulses 

 

Now that we have obtained the single mode coupling results for the coupling between the 

slab and cylinder, to get the overall coupling results, we need to combine the results for 

the coupling between the slab TM0 mode and the individual WG modes. 

 

Using the concept of a frequency-domain transfer function, the output pulses can be 

viewed as the transformation of the input pulse.  If we assume that the complex frequency 

transfer function of the main transmitted pulse (transmitted pulse in Fig. 3-2 or 3-6) is 

Hr(ω), where ω is the angular frequency, then its complex spectrum can be expressed as 

 Ar(ω) = Hr(ω)I (ω), (6-3) 
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where I (ω) is the complex spectrum of the input pulse shown in Fig. 3-1.  In a similar 

fashion the complex spectrum of the cavity pulses can be written as 

 Aj(ω) = Hj(ω)Hr(ω)I (ω) = Hj(ω)Ar(ω), (6-4) 

where for the first cavity pulse ( j = 1) the complex transfer function H1(ω) is given 

explicitly by 

 ∑=
m

m
c
sm

s
cm liaaH )](2exp[)()()(  1 ωπωωω . (6-5) 

The modal amplitudes have been calculated as mentioned earlier, the exponential factor 

on the right side of the above equation is the phase change for the individual WG mode 

after one round trip propagation around the cylinder, and the summation is over all the 

cylindrical WG modes.  Similarly, for the second cavity pulse ( j = 2), the complex 

transfer function H2(ω) can be expressed as 

)()](2exp[)()](2exp[)()(    2 ωωπωωπωω c
sm

m
m

c
cmm

s
cm alialiaH ∑=  

 , (6-6) ∑=
m

m
c
sm

c
cm

s
cm liaaa )](4exp[)()()(  ωπωωω

where the exponential factor is the phase change for the individual WG mode after 

propagating two round trips around the cylinder. 

 

It is worthy to point out that both the coupling structures A and B have the same transfer 

functions H1 and H2, as they have the same coupling configuration in the open window 

area.  However, the two structures have different Hr’s and consequently different Ar(ω) 

profiles as a result of their different sample structures. 

 

In the mode analysis, we have assumed that, in the silicon-filled metal plate waveguide, 
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the THz pulse propagates in the single TEM mode.  Though it is difficult to get a pure 

TEM mode propagation as mentioned in Chapter II, this assumption will not affect our 

numerical calculation of the cavity pulses, since the reference pulse is Ar, the main 

transmitted pulse of the reference scan, and the transfer function Hr cancels out and does 

not appear in the calculation for the cavity pulses. 
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 Fig. 6-16  Frequency transfer functions from single mode coupling for (a) the

first and (b) the second cavity pulses. 
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The calculated amplitude transfer functions |H1(ω)| and |H2(ω)| are presented in Fig. 6-16.  

They are the combination of the coupling results for the first 8 WG modes and there are 

no floating parameters in the calculation.  As expected, the transfer function for the 

second cavity pulse is more complicated than that for the first one, as the WGM THz 

pulse travels longer distance around the cylindrical cavity before coupled out as the 

second cavity pulse. 

 

 

 

6.7 Multimode Coupling from Slab to Cylinder 

 

In Section 6.4 we calculated the coupling from slab TM0 mode to WG modes using single 

mode coupling, which assumes that the slab TM0 mode is not depleted during the 

coupling and there is no “cross coupling” between the WG modes.  Here cross coupling 

means that the interaction (coupling) of the TM0 mode with one WG mode does not 

affect that with another, so the WG modes basically does not feel the existence of other 

WG modes.  This assumption is a very good approximation when calculating the 

coupling from the cylinder to slab (cylinder excited), as any coupling from the WG-

excited TM0 mode back to another WG mode will be a second-order effect.  But for the 

slab excited case, the power is simultaneously injected into all the WG modes and the 

single slab TM0 is depleted, so it is appropriate to use the multimode coupling equations 

(5-26) with (5-27) to calculate this coupling. 

 

90 



As usual, we use the 4th order Runge-Kutta method to numerically solve Eq. (5-26).  The 

initial values are set as asi(ω) = 1 for the TM0 mode, and ami(ω) = 0 for the WG modes.  

Fig. 6-17 shows the amplitude evolution during the coupling for the TM0 mode and the 

WG modes when the first 8 WG modes are considered in the coupling.  Fig. 6-17a is the 
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Fig. 6-17  Amplitude evolution of the coupling from TM0 to WG1, WG2, …, and

WG8 modes in the case of multimode coupling at (a) 0.6 THz and (b) 1.0 THz. 
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results for 0.6 THz and Fig. 6-17b is for 1.0 THz.  Comparing Fig. 6-17 with the single 

mode coupling results shown in Fig. 6-7, we see that the depletion of TM0 mode causes 

the decrease of the coupling into the WG modes, as we expected.  This decrease effect is 

bigger at low frequency (0.6 THz) than at higher frequency (THz), since the coupling 

between the slab and the cylinder is weaker at higher frequency and therefore the 

depletion effect is weaker. 

 

For the coupling from cylinder to slab, the WG modes couple into the slab TM0 mode 

simultaneously.  Though it is possible to use the multimode coupling equation to 

calculate the overall coupling results, since the cross coupling is a second order effect, we 

still use the single mode coupling results for this coupling.  Based on these analyses, the 

transfer functions for the cavity pulses can still be expressed by Eqs. (6-5) and (6-6), but 

now  is the final coupling results for the WG)(ωs
cma m mode from the multimode 

calculation.  The calculated amplitude transfer functions |H1(ω)| and |H2(ω)| are plotted in 

Fig. 6-18.  Again they are the combination of the coupling results from the first 8 WG 

modes. 

 

In addition, it is now possible to get the transfer function for the main transmitted pulse 

when the cylinder is brought in contact with the slab waveguide.  In fact, the final 

coupled amplitude of the slab TM0 mode, , is the transfer function for the main 

pulse.  The amplitude part of  is plotted in Fig. 6-19a and its phase part is plotted in 

Fig. 6-19b. 

)(ωs
sa

)(ωs
sa
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Fig. 6-18  Frequency transfer functions from multimode coupling for (a) the first

and (b) the second cavity pulses. 
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Fig. 6-19  Frequency transfer function for the main transmitted pulse when the

cylinder is brought in contact with the slab waveguide.  (a) Amplitude; (b)

phase. 
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6.8 Comparison between Experiment and Theory 

 

With the calculated complex frequency domain transfer functions for the cavity pulses, 

and the measured main transmitted pulse, we are able to calculate the cavity pulses in 

both the frequency and time domains.  We use the multimode coupling results to continue 

the calculation.  For structure A, we take the spectrum of the main transmitted pulse of 

the reference scan shown in Fig. 3-3c as Ar(ω), and multiply it with |H1(ω)| and |H2(ω)| 

shown in Fig. 6-18, then we get the calculated spectra of the first and the second cavity 

pulses, which are presented in Fig. 6-20 along with the experimental results.  It is seen 

that theory gives reasonably good agreement with the experiment in the overall structure 

and magnitude.  As expected, the theory gives better explanation to the spectral structure 

to the first cavity pulse than to the second one, due to the fact that the second cavity pulse 

propagates longer distance and therefore has more unpredictable feature. 

 

Using the complex spectrum of main transmitted pulse of reference scan and the complex 

transfer functions H1(ω) and H2(ω), the pulses are also calculated in time domain and are 

shown in Fig. 6-21 along with the experiment.  Again the theory explains the overall 

structure and the magnitude of both the cavity pulses. 

 

In addition, the main transmitted pulse can also be predicted by theory when the cylinder 

is brought contact with the slab.  The calculation results are shown in Fig. 6-22a for the 

spectrum and Fig. 6-22b for the time domain, along with the experimental results.  The  
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Fig. 6-20 Comparison of the spectra for (a) the first and (b) the second cavity

pulses for structure A.  The solid lines are the calculated results, and the lines

with open circles represent the experimental results. 
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Fig. 6-21 Measured and the calculated results for (a) the first and (b) the second

cavity pulses for structure A.  The open circles represent the experiment and the

solid lines are the calculation results. 
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Fig. 6-22 Measured and the calculated results for the main transmitted pulse for

structure A.  (a) Spectrum.  (b) Time domain output pulse.  The open circles

represent the experiment and the solid lines are the calculation results. 
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theory gives excellent prediction for this pulse in both the time domain and frequency 

domain.  In the time domain, even the detailed structure is well explained by the theory. 

 

With similar calculations we get the calculation results for structure B.  The theoretical 

and the experimental results for the two cavity pulses are compared in Fig. 6-23 for the 

frequency domain and in Fig. 6-24 for the time domain.  Compared with the results for 

the structure A, we see that the overall agreement between the theory and the experiment 

is better for the structure B.  In the frequency domain, even though the experimental 

results show sharper and deeper interference minima than predicted by theory, the overall 

structure is in good agreement with theory.  In the time domain, initially the theoretical 

oscillation is too slow for the first cavity pulse.  However, at about 225 ps, 

synchronization is obtained and the complicated experimental structure is then in 

excellent agreement with theory.  For the second cavity pulse, initially the theory is out of 

phase with the experimental oscillations.  Starting at about 395 ps excellent agreement 

between the experimental and theoretical oscillations is obtained, although many 

experimental maxima are significantly larger than theory. 

 

The calculation results for the main transmitted pulse are shown in Fig. 6-25 along with 

the experimental results and the reference pulse.  Again the theory gives excellent 

explanation to the experiment.  In time domain, the theory gives the replica of the 

detailed structure of the experiment, demonstrating the suitability of the coupled mode 

theory. 
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Fig. 6-23 Spectra of (a) the first and (b) the second cavity pulses for structure B.

The thin lines with open circles are experiment and the thick solid lines

represent the calculation results. 
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Fig. 6-24  Measured and calculated results of (a) the first and (b) the second

cavity pulses for structure B.  The open circles represent the experiment and the

solid lines are calculation results. 
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Fig. 6-25  Measured and calculated results for the main transmitted pulse for

structure B, along with the reference pulse.  (a) Spectra.  (b) Time domain

output pulses. 
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The discrepancies between theory and experiment for cavity pulses are considered to be 

due to limitations in numerical calculations.  The observed rapidly oscillating structures 

in both the time and frequency domains involve constructive and destructive interference 

among the first eight WG modes of the cylinder.  This interference is determined by the 

complex product of coupling results  and the relative phase difference between the 

WG modes caused by propagation around the cylinder.  For example, the relative phase 

difference at 1.0 THz due to propagating one time around the cylinder for the first two 

WG modes is (7.78)(2π) radians, which is approximately 5% of their total phase angle for 

this propagation.  This result shows the sensitivity of the system, in which a small error in 

the total calculated phase can lead to a large error in the predicted interference.  

Consequently, the numerical calculation for the WGM total phase angles must be 

performed to an accuracy of better than 0.1%. 

c
sm

s
cmaa

 

Fig. 6-26 shows the comparison between the calculated and measured transfer functions 

for the main transmitted pulse for both structures A and B.  For structure B, it is seen that 

the overall agreement between the theory and experiment is fairly good above 0.5 THz.  

Below 0.5 THz, the experimental results seem unpredictable by the theory, as expected.  

For structure A, the discrepancy between theory and experiment is larger, due to the 

alignment problem.  At above 1.0 THz, there are oscillations in the experimental results 

for both structures.  However, the cause of these oscillations is yet to be determined. 

 

In calculating the transfer functions, there are no floating parameters.  The thickness of 

the slab waveguides and the diameter of the cylinder were measured using a micrometer 

103 



0.0 0.5 1.0 1.5 2.0
0.0

0.2

0.4

0.6

0.8

1.0

 Theory
 Structure A Experiment
 Structure B Experiment

 

 

R
el

at
iv

e 
Am

pl
itu

de

Frequency (Thz)

Fig. 6-26  Comparison of the transfer functions of the main transmitted pulse for

structure B.  Solid: calculation results; open circles: experiment. 

with an accuracy of 10 µm, and the refractive index of the silicon is from experimental 

measurement [23].  The calculated spectra and output pulses of the main transmitted 

pulses, and the calculated spectra of the cavity pulses are the exact calculation results.  

However, the calculated results for the time domain pulse for the cavity pulses have been 

shifted to get the maximal oscillation match to the experimental data.  The time shifts for 

the cavity pulses are as follows: 

Structure A: 

First cavity pulse: shifted by 3.2 ps; 
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Second cavity pulse: shifted by 5.5 ps; 

Structure B: 

First cavity pulse: shifted by 2.6 ps; 

Second cavity pulse: shifted by 5.1 ps. 

The sources of this discrepancy are considered to be as follows: accuracy of the 

measurement of the diameter of the cylinder, accuracy of the phase term in the 

calculation of the modal amplitudes.  Since the calculation of phase is more easily 

affected by any approximations, we believe that the latter is the main source of the 

discrepancy. 

 

The calculation results for structure B give better explanation the experiment than that for 

structure A.  As we have mentioned in Chapter II, due to the cylinder holder problem, it 

is very difficult to align the cylinder for structure A.  We believe that in the experiment, 

the cylinder is not optimally aligned for structure A, so the experimental results is not 

satisfactory. 

 

In general, the coupled mode theory gives good explanation to the experimental results 

for both the coupling structures.  The overall structure and magnitude of the experimental 

results are predicted by the theory.  With a shorter open window, structure B effectively 

reduces the broadening of the main transmitted pulse and hence the reflection ones, and 

the cavity pulses have a larger SNR over a longer time range.  All these factors contribute 

to a better agreement between the theory and experiment for structure B. 
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CHAPTER VII 

CONCLUSIONS AND PERSPECTIVES 

 

 

We have successfully demonstrated a dielectric cylindrical WGM cavity for THz pulses.  

The THz pulses are coupled into and out of the cylindrical cavity via a dielectric slab 

waveguide.  The coupled THz pulse inside the cavity is composed of several WGM 

modes.  The continuous oscillation of the WGM-THz pulse inside the cylinder and the 

coupling between the slab waveguide and the cylinder generate a cavity pulse train with a 

constant period.  The first two cavity pulses coupled out of the cylindrical cavity are 

observed, and thereby demonstrate the strong coupling between the slab waveguide and 

the cylinder. 

 

Since our coupling source is subps THz pulses, the observed cavity pulses cover a 

continuous frequency range from 0.4 THz to 1.8 THz, instead of discrete frequency 

points as in the case of using a cw laser as the coupling source.  Due to the multimode 

feature of the WGM-THz pulse, the cavity pulses show spectral oscillations.  The group 

velocity dispersion of the WGM modes caused frequency chirp and pulse broadening of 

the cavity pulses; the second cavity pulse has more complicated patterns in both the 

frequency and time domains than the first cavity pulse. 
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The metal plates used in the coupling structures force the incoming THz pulse couple into 

single mode propagation of the low-loss, non-dispersive TEM mode of the metal plate 

waveguide, which effectively reduces the pulse broadening and frequency chirp of the 

main transmitted pulse.  In the open window area, the THz pulse propagates as a 

combination of the dominant TM0 mode and the minor TM2 mode.  Upon passing the 

second metal plate waveguide, the TM2 mode is basically filtered out, so the THz 

receiver essentially detects a single TM0 propagation in the slab waveguide. 

 

A coupled mode theory in cylindrical coordinates has been developed to analyze this 

coupling structure.  Through the single mode and multimode coupling calculation, we 

calculate the coupling between the single slab TM0 mode and the individual WG mode, 

and then combine the results to get the overall coupling results.  The theory gives 

reasonably good explanation to the experimental results in both the frequency and time 

domains.  Since structure B has a shorter open window and thus a shorter transmitted 

pulse, the cavity pulses from this structure have a better SNR and are better explained by 

the theory. 

 

This study demonstrates the feasibility of the slab-cylinder structure as an effective 

coupling scheme for the THz WGM cavity.  Since the coupling source is a subps THz 

pulse instead of a cw wave, the coherence condition is not required for the coupled WGM 

modes; hence the cavity pulses cover a continuous frequency range, instead of the 

discrete frequency points.  Since the WGM modes travel with different group and phase 
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velocities, the WGM pulse is broadened as it propagates; different cavity pulses carry 

different spectrum profiles due to the interference between the modes upon detection.  

Clearly, this structure is an excellent choice to study the propagation properties of single 

subps pulse of THz radiation propagating in the WGM modes of a cylinder. 

 

As the recent progress in THz waveguide studies [34-38] has made possible the guided 

wave propagation and circuit interconnection of THz radiation, this structure may be a 

promising coupler and resonator for future THz integrated circuits. 

 

To our knowledge, this is the first experimental demonstration of WGM cavity for THz 

radiation.  As mentioned earlier, the unique feature of this study is the use of the subps 

THz pulse as the coupling source.  This feature makes it possible to separate the cavity 

pulses in the time domain, which is essential in studying the propagation properties of 

WGM modes.  However, the broad spectral band of the coupling source also makes it 

difficult to obtain a single mode coupling into the WGM cavity.  As we have seen, 

multimode propagation of the WGM modes causes pulse broadening and frequency 

chirp, which is not desirable in communication-related circuits.  A solution to the single 

mode coupling is to narrow the spectral range of the coupling source.  If we look back at 

the dispersion relation shown in Fig. 6-3, it is possible that, by adjusting the dimensions 

of the slab waveguide and the cylindrical cavity, only a single WGM mode has a suitable 

phase match relation with the slab TM0 mode within a certain frequency range.  If the 

spectral range of the coupling source can be limited in this frequency range, then we shall 

get a fairly good single mode coupling into the WGM cavity.  Recently, progress has 
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been made on the study of tunable THz sources, and widely tunable THz sources are 

available in the frequency range from 0.7 THz to 3.0 THz, with a narrow bandwidth of 

about 0.02—0.1 THz [56,57].  It will be of great importance and interest to realize a 

single mode coupling into the WGM cavity using these new THz sources.  It is expected 

that the propagation properties of a single mode WGM pulse will differ from the 

multimode one, as the pulse broadening and frequency chirp problem will be solved. 

 

It is also possible to modify the coupling structure in order to obtain a single mode 

coupling.  Since single mode propagation of THz radiation has already been realized in 

ribbon and metal waveguides, a circular version of these waveguides could make good 

THz cavities.  However, the excited modes inside this kind of cavities will no longer be 

WGM modes. 

 

WGM resonators are widely used in millimeter wavelength circuits as frequency filters.  

In THz region, as long as the coupling source is a subps pulse, the cylindrical cavity 

cannot serve as a frequency filter, due to the fact that it can support continuos frequency 

range.  However, a wide-band WGM resonator is also important in future THz circuits, as 

it can be used for power combiner or mixer for broadband THz signals. 

 

Starting from the current work, there are still more that could be done in the future, which 

are of both theoretical and experimental interests.  A change of the polarization of the 

input THz beam will result in the excitation of another set of WGM modes.  The WGM 

modes of new polarization would have different coupling and propagation properties.  As 
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mentioned earlier, the change in the dimensions of the both the slab waveguide and the 

cylindrical cavity would result in different coupling features.  A combination of these 

changes (polarization and dimensions) may give us a frequency band selection and mode 

selection. 

 

Another interesting problem is the directional coupler.  Right now our input coupler and 

the output coupler is the same slab waveguide.  It would be of great interest and 

important if we could use a second coupler as the output coupler.  It would be possible to 

tune the output frequency band by adjusting the dimensions of the output coupler.  This 

way we would have more options in selecting the frequency and mode of the coupled 

THz pulse, and thus more flexibility in the future use of this coupling structure. 

 

The searching of new coupling structures for THz cavities is yet to continue in the future.  

As this study has opened a new area of study in THz frequency region, we believe that 

THz technology will find more applications in the future in both scientific research and 

everyday life. 
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Appendix A 

Impedance, Orthogonality and Normalization 

of Guided Modes 

 

 

 

We start from the source-free Maxwell’s equations 
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where ε0 and µ0 are the free space permittivity and permeability, respectively, ε r is the 

relative permittivity, the superscript t denotes the transverse component, and the caret ^ 

indicates a unit vector.  Here we have assumed that the relative permeability is 1.  For TE 

or TM polarized guided modes, the characteristic impedance η is determined by [34,59] 

 , (A-3) ttz HE η=×ˆ
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Now we deduce the explicit expressions for η for both the TE and TM modes.  For TE 

modes, E = Et, so we obtain from (A-1) 
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Replacing ∂/∂z by iβ, and ∂/∂t by −iω, we obtain 
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where β is the propagation constant, ω is the angular frequency, and k is the free-space 

wavenumber.  Comparing (A-5) and (A-3), we obtain for TE modes 
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where 
0

0
0 ε

µη =  is the intrinsic impedance of free-space [60]. 

 

For TM modes, H = Ht, so we obtain from (A-2) 
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Replacing ∂/∂z by iβ, and ∂/∂t by −iω, we obtain 
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where the vector identity c × ( a× b ) = ( c ⋅b ) a− ( c ⋅a ) b has been used.  Comparing (A-9) 

and (A-3), we obtain for TM modes 

 0
0

0 η
ε
β

ε
µ

ε
βη

rr
TM kk

== . (A-10) 

Notice that ε r is a spatial function, indicating that for TM modes, η is also a spatial 

function.  However, for TE modes, all the parameters in Eq. (A-6) are constants for a 

specific mode, so η is also a constant for this mode. 

 

The general orthogonality relation for guided modes can be written as [42,61] 
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S
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where n and m are mode indexes.  When there is no loss present, it can be shown that 

[61] 
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Substituting (A-13) into (A-11) we get 
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, when n ≠ m. (A-14) 

Up to now we have not made any assumptions or approximations, so (A-14) and (A-11) 

are equivalent for TE and/or TM modes.  Note that ηm is space-dependent for TM modes 

of dielectric waveguide.  For TE modes (with the assumption that the relative 

permeability is 1) or waveguides with perfectly conducting walls, ηm is a constant for a 

specific mode.  This leads to the well-known orthogonality relation for TE modes of 

dielectric waveguides or TE and TM modes of waveguides with perfectly conducting 

walls [34,61] 
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If there is no loss present, a similar procedure leads to 
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for the general case, and 
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for TE modes of dielectric waveguides or TE and TM modes of waveguides with perfectly 

conducting walls.  It is further deduced from (A-14) that, in general, for TM modes of 

dielectric waveguides 
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and from (A-16) for the lossless case 
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If the modes are normalized by the power propagating along z direction, such that [42] 
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then the orthogonality and normalization relations can be combined as [42] 
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or equivalently 
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In Eqs. (A-20) to (A-22), the lower case e and h represent normalized fields, and the 

factor 1/2 is from time averaging [42]. 

 

It should be noted that, all the equations with impedance are only valid for TE or TM 

modes.  For hybrid modes as in the dielectric rod, the general forms of (A-11), (A-12), 

and (A-21) should be used for orthogonality and normalization. 
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Appendix B 

Derivation of Reciprocity Relation (5-4) 

 

 

 

For a vector in cylindrical coordinates A , where the superscripts r, θ, 

and x indicate the corresponding components, we have 

xr AxAAr ˆˆˆ ++= θθ
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Multiplying both sides with r and integrate along r direction, and assuming that the 

system is uniform along x direction so ∂/∂x = 0, we have 
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where we have assumed that for guided modes the field quantities are zero at r = ∞.  

Applying this relation to the vector ( )1
*
2

*
21 HEHE ×+× , and with Eq. (5-3), we get (5-4). 

 

A similar approach leads to the unconjugated form (5-5).  In Ref. 53, from (B-1) the 
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authors derived 
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Then the first integral of (B-3) on the right-hand is set to zero (the justification they gave 

was weak), and the reciprocity relation was 
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For comparison, the reciprocity relation we derived, i.e. Eq. (5-5), is also written here 

(with J1 = J2 = 0) 
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Appendix C 

Derivation of Longitudinal Components (5-9a) and (5-9b) 

 

 

 

We start from the vector identity in cylindrical coordinates 
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θ̂1
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t , (C-1) 

where the superscript t denotes the transverse component.  From Eqs. (5-2a) and (5-2b), 

the source-free Maxwell’s equations for the total fields can then be written in the 

cylindrical coordinates as 
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For θ component of (C-2b), we have 
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With the help of (5-8b) we have for the θ component of the total electrical field 
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A similar procedure can be applied to get the θ component of the total magnetic field. 
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Appendix D 

Physical Explanation of Coupled Mode Equations 

 

 

 

D.1 Mode Excitation by Current Sources [42] 

 

Suppose we now have a ring waveguide with a complete set of modes, we determine the 

amplitudes of the modes excited by a prescribed distribution of currents J, as shown in 

Fig. D-1.  The total fields everywhere in the ring are expressed as the modal expansion of 

the complete set of the ring modes 

 

θ 

ε (r,θ ) 

J θ2 θ1 
 

 

 

 

 

Fig. D-1 A prescribed distribution of currents with density J occupies the 

volume between the transverse planes θ = θ1 and θ =θ2. 
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 ∑=
j

jjj ia )exp()( θβθ eE , 

 ∑=
j

jjj ia )exp()( θβθ hH , (D-1) 

where βj is the angular propagation constant for the j th mode, and the modal amplitudes 

depends on θ only.  For the first set of solutions, we use E1 = E, H1 = H, J1 = J, and for 

the second set, we use the j th modal field on the source-free waveguide, i.e. J2 = 0, n2 = 

n1 = n, and 

 E2 = e jexp(iβjθ );  H2 = h jexp(iβjθ ). (D-2) 

Substituting into Eq. (5-4) and assume all the modes satisfy the orthogonal and 

normalization relation, we get 
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j θβ
θ
θ

Je . (D-3) 

 

 

 

D.2 Physical Derivation of Coupled Mode Equations 

 

As shown in Fig. D-2a, we consider a waveguide with relative permittivity profile ),( xrε  

which is invariant in θ , and current density distribution J(r,θ , x).  From (5-2b) the 

Maxwell’s equation is 

 EJH
0

0

µ
ε

εik−=×∇ . (D-4) 

On the other hand, for the waveguide shown in Fig. D-2b, where the current density is 
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zero but the relative permittivity profile ε ′(r,θ , x) is slightly changed from ),( xrε , the 

Maxwell’s equation is 

 EEEH
0

0

0

0

0

0 )(
µ
εε

µ
εεε

µ
εε ikikik −−′−=′−=×∇ . (D-5) 

If we compare Eqs. (D-4) and (D-5), the first term on the right side of (D-5) can be 

identified by a fictitious induced current given by [42] 

 
),( θε r

J(r, θ, x) 

θ 

θ2 θ1 

 

 

 

 

 
(a) 

 

 

θ 

θ1 θ2 ),,( xr θε ′ 

 

 

 

 

 
(b) 

 

Fig. D-2 (a) Unperturbed waveguide with current density distribution J(r, θ, x) 

denoted by darkly shaded regions.  (b) Perturbed waveguide.  Darkly shaded 

regions denote the nonuniformities. 
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0)(
µ
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εε −′−= ik . (D-6) 

The quantity )( εε −′  represents the perturbation to the original medium ),( xrε .  This 

can represent scattering centers in a fiber, or in our case, one ring to another.  For our 

system with two rings, the fictitious current to ring a induced by ring b can be written as 

 TaTik EJ
0

0)(
µ
εεε −−= , (D-7) 

where ET, εT and εa are the total electric field and the relative permittivities defined in 

section 5.3. 

 

On the other hand, mode can be excited by current distribution as shown in Eq. (D-3).  

For ring a, this excitation can be written as 
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Substituting Eqs. (5-8a) and (5-9a) into the right side, we get the right side of Eq. (5-12).  

On the left side of (D-8), a′(θ ) refers to the total amplitude of mode of ring a, which can 

be expressed as the “projection” of the total field into the normalized modal field of ring 

a [42] 

 (∫
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** ˆ)exp(
4
1)( dria aTTaa θθβθ hEHe ) , (D-9) 

which is exactly the term in the brackets on the left side of Eq. (5-12).  For this reason 

Mpq in Eqs. (5-12) and (5-15) may be more precisely called mode-mapping coefficients. 
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Appendix E 

Quasioptic Coupling 
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(n0, ηp0)

(nd, ηpd) 
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 z

 

 

Fig. E-1  Coupling from free-space to dielectric waveguide. 

 

With the knowledge of orthogonality as shown in Appendix A, we derive the coupling 

coefficient for the coupling from free-space to a dielectric waveguide, as shown in Fig. 

E-1.  We assume that the system is uniform in x direction so ∂/∂x = 0.  At the interface of 

the input side, the boundary conditions lead to 
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From Eq. (A-3), (E-2) becomes 

131 



 ∑×=−×
p

t
p

p
p

t
r

t
i azz EEE

ηη
1ˆ)(ˆ1

0

. (E-3) 

It can be shown from (E-3) that 
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Applying the orthogonality relation (A-16) to (E-1) and (E-4), we obtain 
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where ηp is space-dependent 
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Assuming Er = 0 (no reflection) outside dielectric (|y| > b), (E-5) and (E-6) become 
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Adding both sides of (E-8) and (E-9), and solving for ap, we get 
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Applying the similar procedure to the output interface, we get at the output, the coupling 

from pth guided mode into the same mode as the incident mode 
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If the modes are normalized by (A-20), then 
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Other types of coupling can be calculated following the similar procedure.  The couplings 

in our structures include: (a) coupling between free-space and a parallel metal plate 

waveguide with plate separation 2b; (b) coupling between the silicon-filled metal plate 

waveguide and the dielectric silicon slab waveguide of thickness 2b.  For case (a), the 

coupling coefficient is calculated as 
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For case (b), the coupling coefficient for the coupling between TMp mode of the metal 

plate and the TMq mode of the slab is given as 
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where the subscripts gp denote the TMp mode of the metal guide, sq denote the TMq 

mode of the slab mode, and d means inside the dielectric.  In the derivations we have 

assumed that the reflection mode has the same impedance with the incident mode, and 

the modal fields in (E-13) and (E-14) have been normalized by (A-20). 
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Appendix F 

Fourth Order Runge-Kutta Method 

 

 

 

For an initial value problem with single variable 
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the 4th order Runge-Kutta method can be used to numerically solve it.  In this case, the 

recursive formula at each step is [58] 
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and h is the step size for x in the numerical calculation. 
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Now we expand this method to a system with multiple variables.  Consider the following 

initial value problem with N variables 
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In a similar fashion, the recursive formula is written as 
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where 
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For our coupled mode equations, the problem is of the form of 
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where M(x) is a known N × N matrix.  To solve this problem, let Z(x) = M(x)Y(x), then 

we get 
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 Y(x) = M−1(x)Z(x), (F-8) 

where M−1(x) is the inverse matrix of M(x).  Substitute these relations into (F-7), we get 
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which is of the same form as (F-4).  After solving this problem for Z(x), solutions of 

Y(x) can be obtained by (F-8). 

 

Another way of solving the problem is to expand the differentiation in (F-7).  Noticing 

that 
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we can write Eq. (F-7) as 
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which is of the solvable form of (F-4). 
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