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Chapter 1     

Introduction 

 

 

Imaging technology has a rich history that began thousands of years ago.  The reflection 

from a pool of still water or a shiny metal surface was arguably the first imaging method 

routinely used by mankind.  With the advent of lenses, many other novel forms of optical 

imaging emerged, including telescopes and microscopes.  Using a lens, a pinhole camera, 

and a sensitized pewter plate, Niépce was the first person to permanently record an 

image.   Optical photography and other forms of optical imaging have since become 

commonplace. 

Of course, imaging has not been constrained to optical frequencies.  In 1895 

Roentgen discovered X-rays and successfully used them to form an image of his wife’s 

hand.  As with X-rays, whenever a portion of the electromagnetic (EM) spectrum became 

practically usable, it wasn’t long before it was adapted to an imaging configuration.  

Therefore, it is not surprising that many types of imaging systems exist today and utilize 

the radio, microwave, infrared (IR), visible, ultraviolet, X-ray, and gamma ray portions of 

the EM spectrum.  Pressure waves have also been adapted to imaging and are manifest in 

the various forms of ultrasonic and sonographic imaging systems. 

The terahertz (THz) frequencies, lying right between the microwave and IR 

bands, are one of the more interesting portions of the EM spectrum, often behaving with 
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both microwave and optical characteristics simultaneously.  Over the last couple decades, 

new means of producing and detecting terahertz (THz) radiation have come into frequent 

use.  These methods produce sub-picosecond, broadband pulses of terahertz (THz) 

radiation by the use of ultrashort laser pulses and either fast photoconductive 

switches [1,2] or optical rectification and electro-optic effects [3,4].  The consequent 

liberation of the THz spectral band has since sparked many new forms of research 

including various forms of THz imaging [5-10]. 

 

1.1  THz Properties and Imaging Applications 

As with any portion of the EM spectrum, THz has unique properties that make it highly 

suitable for certain imaging applications.  First, THz generated in the aforementioned 

fashion is broadband with usable frequencies typically ranging from 0.05 THz to 3 THz.  

Since it is in the form of a pulse, it can be used as a powerful tool to simultaneously 

probe chemical or material properties over a broad spectral range.  It has been found that 

THz penetrates most dry, non-polar, non-metallic objects such as paper, cardboard, glass, 

plastics, and non-polar organic substances [11].  For dielectrics, such as semiconductors, 

THz transparency depends on several factors including impurity concentrations [12].  

Polar liquids and gases, such as water and water vapor, have very strong absorption lines 

in the THz region [13-15]. 

Additionally, the sub-picosecond pulses of THz radiation are detected coherently, 

allowing direct measurement of both amplitude and phase.  This provides all the 

information needed to determine the complex dielectric function of a material.  The THz 
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pulses are also transform-limited [16], and can be used as ranging pulses by which the 

structure of an object can be characterized in the time-domain via radar or echo-location 

principles.  Also, the THz radiation is fairly linearly polarized; therefore polarization 

sensitive measurements are possible. 

Finally, due to its relatively short wavelength, THz radiation is naturally suited to 

high resolution imaging.  By properly designing an imaging system at THz frequencies it 

should be possible to achieve imaging with resolution on the order of a few hundred 

microns.  This represents a significant resolution advantage over similar microwave 

systems.  Like microwave systems, however, a THz system would retain the same 

powerful property of coherence. 

Combining all these features with an imaging system makes possible many 

interesting applications.  One such application is the spatially-dependent composition 

analysis of materials.  With this analysis, spectroscopy could be used to determine 

whether an object was isotropic, homogeneous, or in possession of some other similar 

property.  In a similar fashion, spectroscopy can be used to examine the content of certain 

chemicals with great sensitivity.  For example, applications such as burn diagnostics [11], 

or biological tissue characterization [17], can utilize the high THz sensitivity to water.  In 

these cases, minute differences in hydration levels could be used to distinguish various 

different types of tissue.  Heavily burned tissue, for example, would have less moisture 

content than lightly burned tissue.  It might also be possible to use hydration level, 

polarization rotation, or other measurable THz effects to distinguish cancerous and 

healthy tissue in a non-invasive fashion.  Such measurements have already been used to 

identify dental caries [17] and could form the basis for early detection methods of skin 
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cancer and other skin diseases.  With stronger THz sources, this idea could be extended 

to identify disease in deeper tissues. 

Water content can also provide a quality control metric for moisture sensitive 

products, such as food items.  One particular benefit of THz in this respect is the ability 

to penetrate most packaging materials, thereby allowing evaluation of a sealed product 

without exposing its contents to contamination.  This property is particularly important 

for sterile or perishable items such as medical or food products.  Other quality control 

processes can use the coherent, pulsed nature of the THz to tomographically identify 

manufacturing flaws, such as cracks or voids, inside of plastics, ceramics [18] and other 

products, which are semi-transparent to THz. 

More potential imaging applications utilizing the coherence and spectral range of 

THz include pollution control and security.  Being coherent, a THz system is highly 

insensitive to thermal noise sources and is able to measure the spectral response of very 

hot gases.  As such, a THz imaging system could be used to monitor pollutant levels in 

exhaust gases or combustion processes [19].  Using spectral analysis, a THz imaging 

system could also address security issues by identifying weapons, such as letter bombs or 

explosives, biohazards or drugs [20], without opening up packaging material. 

 

1.2  Purpose of This Study 

This dissertation presents an effort to demonstrate, characterize, and theoretically explain 

the operation of a new type of THz imaging called quasi-optic THz imaging.  In order to 

better understand the quasi-optic THz imaging system it is beneficial to review some 
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other existing systems, which work in different configurations and form images by 

various methods. 

Some systems generate an image by raster scanning an object through a tightly 

focused THz beam, where either the transmitted [5] or reflected [6] radiation is measured, 

point-by-point.  Such a system is shown in transmission mode in Figure 1-1.  This system 

is good for getting a high THz brightness on one spot of interest, thereby yielding high 

signal-to-noise ratio (SNR) images.  The system can also achieve good transverse 

resolution by using very large lenses (or mirrors).  One disadvantage of this system is that 

it is necessary to have a thin, uniform object to stay within the Rayleigh range of the 

focused THz beam.  Furthermore, the effects of diffraction are not often considered in 

such a system so it is only assumed that material properties do not re-direct the beam.  

Such assumptions can somewhat invalidate certain measurements such as absorption.  

While this system does collect some range (depth) information based on the time-delay of 

the pulses through the sample, it is not a true three-dimensional imaging method. 
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THz 

Transmitter 
THz 
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Lens/Mirror Lens/Mirror 
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Figure 1-1.  Point illumination, transmission-mode, THz imaging system. 

 

Another type of THz imaging system already in use is shown in Figure 1-2.  In 

this synthetic aperture, impulse imaging system [10], the object is illuminated by a THz 

beam and scatters a portion of the incident radiation to a receiver fixed at some bistatic 

angle.  A large number of discrete measurements of the scattered field are taken, each 

with either a different rotation angle of the object or a different bistatic angle between the 

transmitter and receiver.  Knowing the time-delays of the received pulses, the orientation 

of the object, and the orientations of the transmitter and receiver, it is possible (and 

necessary) to reconstruct the image mathematically. 

With this system it is easy to synthesize a very large imaging aperture to achieve 

excellent cross-range (transverse) resolution in one dimension.  This dimension is labeled 

cross-range(1) in Figure 1-2.  Range resolution is also very good due to the large 

bandwidth of the THz pulses.  However, due to necessarily complicated object or 

receiver orientations, it is more challenging to synthesize a large aperture in the second 

transverse dimension.  This dimension is normal to the plane of the figure and is labeled 
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cross-range(2) in Figure 1-2.  Therefore, high resolution in the cross-range(2) direction 

can be much more difficult to achieve. 

 
 

THz 
Transmitter 

THz 
Receiver 

Range 

Cross 
Range (1) 

Cross 
Range (2) 

Rotation 

 
 

Figure 1-2.  Synthetic aperture THz impulse imaging system. 

 

Also, this system is a sparse-aperture system, meaning the synthesized imaging 

aperture is only sparsely filled with the discrete samples of the wavefront.  As in large 

apertures created with antenna arrays, sparse filling can create side lobes which degrade 

the end appearance of an image.  To avoid this problem, this impulse imaging system can 

require a large number of measurements to fill in the aperture. 

Finally, in the impulse system, the receiver intercepts only a very small portion of 

the scattered wavefront at any given measurement.  Therefore, if a scattered wavefront is 
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very weak the resulting SNR of the measurement will be very low.  In this way, small 

objects, or any objects that don’t reflect a large amount of THz radiation back to the 

receiver, can be difficult if not impossible to image. 

Electro-optic (EO) detection techniques have also been used to generate images 

without scanning the sample and are excellent for THz beam profiling [7,8].  Figure 1-3 

shows a simplified diagram of such a system in transmission mode.  In this system, a THz 

beam is passed through a sample to form a shadow image on an EO crystal.  A linearly 

polarized, pulsed laser co-propagates through the crystal with the pulsed, THz image.  As 

they travel through the crystal, the THz electric-field induces a small rotation in the 

polarization of the laser via the electro-optic effect.  This effectively imprints the THz 

image onto the laser.  The newly polarized laser pulse containing the image information 

is then run through an analyzing polarizer and detected by a CCD camera.  By changing 

the relative delay between the THz pulse and the laser pulse, the entire time-dependence 

of the THz image can be recorded.  The main advantage of this system is that the entire 

transverse spatial profile of the image is at once recorded by the CCD camera.  There is 

no need for image sampling except in the time-domain.  In this respect, imaging can be 

done very quickly and without mathematical reconstruction.  However, this speed 

generally comes at the expense of dynamic range so that it is difficult to image weakly 

transmissive or reflective objects with good SNR. 
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EO Crystal THz 
Transmitter 

Object 

CCD 
Camera 
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Polarizer 

Analyzer 

THz 

 
 

Figure 1-3. Electro-optic THz imaging system.  THz beam (solid lines) co-propagates 
with laser beam (dashed lines). 

 

 

The quasi-optic THz imaging system, presented in this dissertation, retains many 

of the beneficial properties of the previously described systems, while simultaneously 

adding other features.  For the sake of pointing out some of its properties, a brief 

explanation of its operation is now given.  A much more detailed discussion will be 

presented in chapter 3.  Figure 1-4 shows the quasi-optic THz imaging system.  In this 

arrangement, THz radiation illuminates the entire object, which then scatters some of the 

incident radiation to a large spherical imaging mirror.  The mirror is positioned to collect 

a relatively large portion of the scattered radiation and refocus it in the form of a 

one-to-one image in front of a fixed THz receiver.  This image is a complete, real, THz 

field image and is recorded, one portion at a time, by translating it in front of a fixed THz 

receiver. 
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Figure 1-4. Quasi-optic THz imaging system.  THz beam path is shown as translucent 

tubes. 
 

The system is unique because, except for THz generation and reception, it uses 

optical methods exclusively to achieve imaging.  Rather than illuminating an object with 

a pin-point beam, the entire object is illuminated and, therefore, the entire image is 

created at once by the spherical imaging mirror.  No mathematical reconstruction of data 

is necessary because the image itself is sampled, not the wavefront scattered from the 

object.  Moreover, since the THz is pulsed, the system also provides a ranging view of 

the object, similar to those provided by conventional radar systems.  Therefore, this 

system behaves very much like a THz camera with the added benefit that the “film” is 

coherent.  These properties make three-dimensional, diffraction-limited imaging of large, 

non-uniform, and opaque objects simple yet effective. 
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The spherical imaging mirror is quite large, is completely filled, and serves as the 

resolution defining aperture of the system.  Therefore it automatically produces high-

resolution images with little interference from side lobes.  It also serves as a large 

collection optic for scattered THz radiation, making it possible to record relatively high 

SNR images from very small or weakly reflecting objects. 

Since the system is coherent, it can also take advantage of aperture synthesis 

(AS), a technique whereby the resolution defining aperture in a system is synthetically 

increased in transverse extent.  Therefore, this dissertation also presents a demonstration 

and theoretical explanation of an extension to the quasi-optical THz imaging system 

whereby multiple, coherent THz images are recorded and later combined to form a 

sharper image.  This is called synthetic phased-array THz imaging and is a powerful 

method by which resolution can be increased using phased-array principles.  Moreover, 

by judicious placement of the synthetic, phased-array elements, the resulting stand-alone, 

diffraction-limited images can be combined by simple superposition rather than complex 

mathematical reconstruction to form a single higher-resolution image. 

 

1.3  Scope of the Dissertation 

The purpose of chapter 2 is to provide an introduction (or review) of some fundamental 

optics principles and definitions which will be used extensively throughout the 

dissertation.  The first section provides some definitions of the various components of a 

generalized imaging system and also discusses the paraxial approximation.  The second 

section discusses the multi-dimensionality of THz image data and how it can be 
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represented and simplified with the paraxial approximation.  The next section outlines 

various definitions of resolution and which ones are applicable to the THz imaging 

system and why.  The last section introduces a few basic spatial-frequency concepts, 

which are common to the study of Fourier optics and are occasionally useful in 

discussing the THz imaging system. 

Chapter 3 provides a detailed description of the experimental setup of the quasi-

optic THz imaging system.  The general layout is discussed first and is followed by a 

detailed discussion of how a THz image is actually produced and recorded, including 

more detail about the roles of the individual components.  Finally a link between THz 

imaging and ultrasonic imaging is presented. 

Chapter 4 presents the experimental results of one-dimensional point source 

imaging [21].  Several images, generated under various conditions, are presented and 

used to verify that the system is diffraction limited.  One image of a dual point-source 

object is presented along with some unique resolution features of the system. 

Chapter 5 extends the work of chapter 4 into two-dimensional, synthetic phased-

array THz imaging [22].  First, a brief history of aperture synthesis is presented, followed 

by a discussion of how it might be applied to the THz imaging system.  The actual 

realization of AS by using a synthetic phased-array is then discussed.  Next, some 

conditions for proper operation, such as phase references and object placement accuracy, 

are presented.  Several experiments are then presented wherein different objects are 

imaged using the synthetic phased-array method.  Interspersed within these discussions 

are some of the more subtle details of the operation of the system.  These include the 

establishment of proper relative phase between array elements, the various methods by 
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which three-dimensional image data can be displayed on two-dimensional paper, and 

some image analysis and enhancement techniques.  Some other important details, 

including object stealth behavior, multi-path effects, and array steering are also discussed. 

The purpose of chapter 6 is to present a theoretical explanation of all the 

experimental work.  The general approach to modeling is presented first, and is followed 

by some discussion of approximations, notation, and some comparisons to typical optical 

and radio systems.  Three different theoretical models are then discussed in both the 

monochromatic and broadband contexts.  The results of each method are displayed in the 

same form for comparison.  Finally, using the last model, several theoretical images, 

generated to mimic the experimental data, are presented with actual data, for comparison.  

Chapter 7 provides a brief summary of the work and presents some conclusions. 
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Chapter 2     

Imaging Systems and Resolution 

 

 

To facilitate the understanding of the THz imaging system this chapter provides a brief 

overview of some imaging principles.  A basic understanding of geometric optics and 

elementary diffraction theory is assumed.  The definitions and principles introduced in 

this chapter are standard notation as found in references [23-25] and will be used 

consistently in describing the THz imaging system. 

 

2.1  General Imaging Systems 

Figure 2-1 shows the model of a basic imaging system.  The object occupies some region 

of space, called the object space, and some set of optics is used to form an imperfect 

representation of the object, called the image, somewhere in a separate space called the 

image space.  If a cone of rays diverging from some object point is perfectly transformed 

into a cone of rays converging through an image point, the system is said to be stigmatic 

for these two points.  In other words, the imaging is perfect between these two points, 

neglecting diffraction.  The points themselves are called conjugate points.  A well-

corrected imaging system is defined as one that transforms the diverging spherical 

wavefront emitted by a point object into a converging spherical wavefront centered at the 
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geometrical image point [26, Chap. 3].  Such a system is obviously stigmatic and suffers 

no aberrations, so its resolution is limited by diffraction. 

Most imaging systems, however, are designed to form quality images between 

two surfaces comprised of a set of conjugate points.  These can be referred to as the 

object surface and the image surface.  In general these surfaces are curved, but for 

simplicity, they will now be assumed to be planar and shall henceforth be referred to as 

the object plane and image plane, or geometric image plane.  The image plane can also be 

defined as that plane in which the projected image is the most accurate representation of 

the object [23, Sec. 5.3.1].  Assuming fixed optics and a fixed object plane we can 

equivalently define the geometric image plane as the plane wherein imaging is most 

stigmatic (most perfect).  Not surprisingly, the geometric image plane is also where 

geometric optics predicts the image to lie. 

 
 Object Plane Image Plane 

Object Space Image Space 

Optics 

System Optical Axis 
φ  ρ 

Aperture Stop 

z 

y 

 
 

Figure 2-1. Basic imaging system diagram.  Light dashed lines indicate the path of one 
ray through the system and φ is its angular separation from the system 
optical axis. 

 

The components of the system are situated along the system optical axis, which is 

in general, normal to the object and image planes.  The system optical axis can be 
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regarded as the central path around which a bundle of rays, issuing from the object, 

propagates as it passes through the optics and to the image plane. 

A distinction is made here between the system optical axis and the symmetry axes 

of the individual optical components.  Consider an off-axis imaging system, as shown in 

Figure 2-2, wherein a spherical mirror is used for the single optical component.  The 

symmetry axis of the mirror is the one around which the mirror has rotational symmetry.   

This axis is not coincident with the system optical axis, in this case, but is angularly 

separated from it by the off-axis angle, α.  This distinction is important for off-axis 

imaging systems because some image aberrations are functions of α. 
 

 Object Plane 

Image Plane 

Mirror Axis α 

 
 
Figure 2-2. Off-axis imaging system with off-axis angle, α.  System optical axis (heavy 

line) lies at an angle, α, with respect to mirror rotational axis (dotted line). 
 

Most imaging systems operate on a bundle of rays whose divergence from the 

system optical axis subtends only a small angle, φ, such that sin(φ) ≈ φ, and whose 

maximum transverse extent, ρ, is limited, as shown in Figure 2-1.  Such systems satisfy 

the paraxial approximation, which allows the effects of optics on the ray bundle to be 

more easily predicted and quantified.  The aperture stop is used to limit the maximum 

transverse extent of the bundle of rays.  Sometimes, as in the case for the THz imaging 
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system, the aperture stop is defined by the rim of a lens or mirror and is not a separate 

diaphragm or iris, like the one shown in Figure 2-1. 

The exit pupil of a system is defined as the image of the aperture stop as seen 

from an axial point on the image plane through the interposed lenses, if there are any 

[24, Sec. 5.3.2].  More simply, this pupil defines how angularly large the most limiting 

aperture in the system appears from the vantage of the axial image point.  The exit pupil 

is important in diffraction calculations and will be discussed more in chapter 6.   

 

2.2  Image Representation 

Consider a hypothetical data set comprised of intensity measurements for an imaging 

system whose optical axis lies parallel to the z-axis, like the one in Figure 2-1.  For 

monochromatic light, these measurements can represent an image located in the image 

plane.  Such an image could be represented by the variable I(x,y).  To represent the 

intensity distribution over all image space, rather than on the image plane alone, the 

image variable would become I(x,y,z).  Now, if the light source was pulsed or broadband, 

the image would be time-varying and could be represented by I(x,y,z,t).  Similarly 

E(x,y,z,t) could represent the electric field distribution in the image space, which, by 

nature, is time-varying.  Neglecting the vectorial nature of fields, this is the most general 

representation for an image as it incorporates the variability of all four measurable 

dimensions. 

For paraxial rays, the dependence of E on both z and t can sometimes be 

considered redundant.  Consider the electric field distribution in two closely spaced 
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planes in image space, one located at z0 and the other at z1 > z0.  Using pulsed light under 

the paraxial approximation, the field in z1 at time t1 will be almost equivalent to the field 

in z0 at some earlier time t0, and the approximation E(x,y,z1,t1) = E(x,y,z0,t0) is valid, 

where t1-t0 = (z1-z0)/c.  This says that the pulse merely traveled from one z-plane to the 

other, but its transverse, spatial distribution was essentially unchanged.  Therefore, in a 

paraxial, pulsed system, the variables z and t are linearly dependent for a field distribution 

over a sufficiently small image space and the field can be expressed therein as either 

E(x,y,z) or E(x,y,t).  This approximate representation is valid for most cases in the THz 

imaging system and it allows the direct transformation of time-delays into ranging 

distances. 

 

2.3  Resolution Criteria 

Several criteria are used to define the transverse, spatial resolution in an imaging system.  

Consider the Rayleigh and Sparrow resolution criteria for monochromatic, circular-

aperture imaging systems.  The Rayleigh criterion states that two point sources are just 

resolved when, in their image, the intensity peak of one is coincident with the first 

intensity null of the other [24, Sec. 10.2.6].  The Sparrow criterion states that two points 

are just resolved when, in their image, their overall intensity profile acquires a flat top 

[24, Sec. 10.2.6].  These criteria are shown in their normalized forms in Figure 2-3. 
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Figure 2-3. Normalized Rayleigh and Sparrow resolution criteria.  Solid and dotted lines 
indicate individual and overall intensity profiles, respectively 

 

Another criterion used for defining the resolution can be adapted to a single point 

source and is called the Buxton criterion.  It specifies that two point sources are resolved 

when the distance between the central maxima of the composite amplitude distribution is 

equal to the full width at half-maximum (FWHM) of the diffraction pattern of either point 

source [27].  Since resolution is defined by the FWHM of either pattern, it can similarly 

be applied to a single source.  In this case resolution is a measure of the FWHM of the 

main lobe of the amplitude profile and higher resolution accompanies lower FWHM 

measurements.  This FWHM criterion is used in the discussion of the THz imaging 

system. 

Like radar, the THz system is a pulsed system, and also has the ability to 

discriminate objects based on their range.  Its range resolution is determined by the 

temporal length (and hence the bandwidth) of the THz pulse.  Two object features are 
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considered resolved in time if their reflections do not greatly overlap.  Using the radar 

ranging formula, range resolution is on the order of cτ/2, where τ is the pulse duration.  

One criterion useful for quantifying this resolution is the Schuster criterion.  Like the 

Rayleigh and Sparrow criteria it is generally applied to spatial intensity patterns.  It states 

that two sources are resolved when no portion of the main lobe of the diffraction pattern 

overlaps with the main lobe of the other [27].  A variation of this criterion can be used to 

quantify the minimum temporal separation between two resolvable THz pulses.  It 

specifies that two pulses, separated by τ, are just resolved when τ is the temporal distance 

between zero-crossings of a THz pulse.  This criterion works well and was used for the 

THz imaging system.  

 

2.4  Spatial Frequencies 

Analogous to time-domain signals, images are spatial-domain signals and can be 

decomposed into their spectral components, called spatial frequencies.  Whereas high 

frequencies are necessary to obtain sharp temporal features in a time-domain signal, high 

spatial frequencies are necessary to obtain sharp spatial features (high resolution) in an 

image.  Sampling rules follow similar relationships.  To acquire an accurate discrete 

representation of a continuous image, sampling points must be sufficiently dense such 

that aliasing doesn’t occur for the higher spatial frequencies.  All the images recorded by 

the THz imaging system satisfied these sampling requirements. 

The spatial frequency bandwidth of an image is determined by the wavelength of 

the radiation employed and the angular extent of the exit pupil in the system.  The 
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resolution of an imaging system is also determined by the same two factors, so it is not 

surprising that resolution is highly related to spatial frequency bandwidth.   

Following the notation of [24,30], spatial frequencies can be determined by 

simple geometry.  Consider the optical system shown in Figure 2-4.  The spherical wave 

issuing from the aperture and converging to point O can be decomposed into a set of 

plane waves, or rays.  One such ray, coming from the edge of the aperture, intersects the 

optical axis with an angle φ.  The figure shows several wavefronts of this ray as dashed 

lines, one of which passes through O.  The immediate neighboring wavefront crosses the 

y axis at some point Py.  The distance between the wavefronts is just the wavelength of 

the radiation, λ, and the distance between O and Py can be thought of as the spatial 

wavelength, λy.  It is related to the angular spatial frequency, ky, by  
 

ky = 2π/ λy      (2-1) 

and its value is determined by  
λy = λ / sin(φ).      (2-2) 

The highest spatial frequencies are therefore generated from rays having minimum λ and 

originating from the edge of the aperture, where φ is maximized. 
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Figure 2-4.  Spatial frequency determination.  Wavefronts are denoted by dashed lines. 

 

It is noted that the angular spatial frequency, ky, is merely the y-component of the 

k-vector of the plane wave and the overall wavenumber, k, of the plane wave is equal 

to 222
zyx kkk ++ = 2π/λ. 

These concepts can be easily linked to imaging system resolution.  For a 

monochromatic imaging system, operating at some frequency f = c/ λ, no object features 

smaller than the shortest spatial wavelength, λy, should be spatially resolvable in the 

y-direction.  However, even if high spatial frequencies are available from highly off-axis 

portions of aperture, imaging quality suffers unless the remaining aperture is filled.  

Consider the imaging system shown in Figure 2-5a.  This system has an annular aperture 

which passes high spatial frequencies but filters out low spatial frequencies.  It has a low 

spatial frequency bandwidth (small ∆φ) because the aperture is not filled.  Such a system 

could only produce an image of the sharp features of an object, but could not produce an 

image of the slowly-varying, or smooth, features of the object.  Similarly, the system 

shown in Figure 2-5b has only low spatial frequencies.  Such a system could only 

accurately produce an image of the smooth features of the object.  However, if both 
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systems were added together, the image could have both sharp and smooth features and 

more exactly represent the object.  This is completely analogous to time-domain signal 

processing wherein a certain continuum of frequency components is necessary to exactly 

create any arbitrary waveform. 
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Figure 2-5. Low spatial frequency bandwidth imaging systems.  (a) system filters out 
low spatial frequencies,  (b) system filters out high spatial frequencies. 

 

Therefore, in order to form the most accurate image of an object it is necessary to fill in 

the aperture, or provide large spatial frequency bandwidth.  Such concepts form the basis 

for many image processing techniques such as edge detection and image smoothing.    
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Chapter 3     

Experimental Setup 

 

3.1  General Layout 

The overall experimental setup is shown in Figure 3-1 and consists of an optoelectronic 

THz transmitter and receiver, illumination optics, an object and collection optics.  To 

make things clearer, the detailed discussion of the transmitter and receiver is deferred 

until the next section. 

 
 
 
Figure 3-1. THz imaging system.  The THz path is indicated by the translucent “tubes”.  

In this figure the object is a small sphere. 
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The illumination optics consist of a paraboloidal mirror placed just in front of the 

transmitter, a flat mirror and a silicon focusing lens, all of which serve to efficiently 

direct and brighten the illumination on the object.  The paraboloidal mirror has a focal 

length of 119 mm and is placed 119 mm in front of the transmitter.  The 50 mm diameter 

silicon focusing lens is made of high-resistivity silicon (Resistivity ≈ 104 ohm-cm), has a 

focal length of 280 mm and is placed 280 mm upstream from the object. 

The collection optics consist of a spherical mirror and a second flat mirror, which 

focus and direct scattered THz radiation to the receiver.  The spherical mirror is a 

152.4 mm diameter optical-grade mirror with a radius of curvature of 610 mm and a focal 

length of 305 mm.  It is an aluminum-coated telescope mirror with a silicon-monoxide 

(SiO) protective coating. 

The overall layout of the system is designed to minimize imaging aberrations, 

such as astigmatism and coma, while maintaining practical functionality.  All the 

components of the system lie centered in y = 0 plane.  In order to further discuss the 

layout, shown in a plan view in Figure 3-2, it is convenient to define some axes within 

the system.  The central axis extending from the object to the spherical mirror, back to the 

second flat mirror and finally to the THz receiver is the system optical axis, as defined in 

chapter 2.  The axis extending from the first flat mirror through the silicon focusing lens 

and to the object is called the illumination axis.  The illumination axis and the first leg of 

the system optical axis subtend a 17° angle at the object.  This angle prevents the silicon 

focusing lens from shadowing the spherical mirror from any radiation scattered by the 

object.  Further concern for the orientation of the system optical axis is due to third-order 
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imaging aberrations.  Two of these aberrations, astigmatism and coma, generally occur 

whenever an object does not lie on the symmetry axis of the imaging element, in this case 

the spherical mirror.  Therefore the system optical axis should be made to coincide, as 

much as possible, with the symmetry axis of the spherical mirror.  For this reason, the 

system is folded as much as practically possible such that the system optical axis 

subtends only 10° from its angle of incidence to its angle of reflection at the spherical 

mirror.  The symmetry axis of the spherical mirror bisects the system optical axis. 
 
 
 
 

 
 
 

Figure 3-2.  Plan view of THz imaging system. 
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The origin of the system is defined as the point 610 mm from the surface of the 

mirror on the system optical axis.  The object is normally located at the system origin and 

is shown as such in Figures 3-1 and 3-2.  The first leg of the system optical axis, from the 

origin to the spherical mirror, defines the direction of the positive z-axis.  The plane 

defined by the x and y axes is then perpendicular to the system optical axis.   

 

3.2  THz Image Production 

As in references [16] and [12], subps THz pulse generation begins at the transmitter, 

shown in Figure 3-3, with a train of 80 fs optical pulses having a center wavelength of 

801 nm and a repetition rate of 91 MHz, generated by a Kerr-lens mode-locked 

Ti:Sapphire laser.  The optical pulses have an average power of about 25 mW and are 

shaped into an ellipsoidal focus by a 300 mm focal length cylindrical lens.  They are then 

further focused by a 10 mm focal length plano-spherical lens onto the inner edge of the 

anode line of a coplanar transmission line on a semi-insulating GaAs chip as in reference 

[28].  The transmission line consists of two parallel 10 µm wide, 20 mm long, metal lines 

separated by 80 µm, and is shown in Figure 3-3c.  The major axis of the ellipsoidal focus 

is parallel to the lines while the linear polarization of the optical beam is perpendicular to 

the lines.  This arrangement enhances the THz output power [29] and allows the incident 

optical power to be increased without damage to the chip.  The coplanar transmission line 

is biased between 50 V and 70 V to accelerate the free carriers generated by each optical 

pulse as it creates a temporary electron-hole plasma in the gap between the biased lines.  

The accelerated carriers subsequently radiate a near single-cycle electromagnetic pulse of 
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THz radiation, linearly polarized in the direction of the bias field and having frequencies 

ranging from about 0.050 to 2.5 THz.  Much of this THz radiation is collected by a 

10 mm diameter hyper-hemispherical lens, made of high-resistivity silicon and attached 

to the back of the GaAs chip.  The lens focus is coincident with the optical focus on the 

transmission line, so the lens collimates the THz radiation and emits it as a highly 

directional, freely-propagating beam.   This chip, lens combination, as a whole, 

constitutes the transmitter of the system. 
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Figure 3-3. THz transmitter details. (a) side view of assembly, (b) view of assembly 

showing  transmission line orientation, (c) scale diagram of coplanar lines on 
chip and elliptical laser focus (shown in gray). 
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After leaving the transmitter, the radiation propagates to an off-axis paraboloidal 

mirror, which re-collimates the beam and directs it toward a flat mirror.  The flat mirror 

then redirects the beam toward the object.  On the way to the object, the beam passes 

through the aforementioned silicon focusing lens.  This lens has a focal length of 280 mm 

and is located 280 mm upstream from the object, thus forming a frequency independent 

illumination spot on the object.  This spot has a 1/e amplitude beam diameter of 

approximately 14 mm. 

As in previous THz ranging systems [31], the object is illuminated by the THz 

beam and subsequently scatters some of the incident radiation to the collection optics and 

the THz receiver.  However, in the quasi-optic THz imaging system, the scattered 

radiation is collected by the spherical mirror located 610 mm from the object.  The focal 

length of the spherical mirror is 305 mm so it projects a real, inverted, one-to-one THz 

image of the object toward the second flat mirror.  The flat mirror redirects this image so 

that it falls in front of the fixed THz receiver.  The receiver is located 627 mm from the 

spherical mirror measured along the system optical axis.  Therefore the one-to-one image 

is located approximately 17 mm in front of the receiver. 

Like the transmitter, the THz receiver, shown in Figure 3-4, is comprised of a 

10 mm diameter hyper-hemispherical silicon lens, made from high-resistivity silicon, 

mounted with an optoelectronic semiconductor chip similar to those used in previous 

THz work [16].  The chip is made from ion-implanted silicon-on-sapphire (SOS) and a 

50 µm, polarization-sensitive dipole antenna is mounted on its surface.  A detailed view 

of the receiver chip is shown in Figure 3-4c.  Between the silicon lens and the SOS chip 

are mounted two 500 µm thick, optically polished shims of high-resistivity silicon.  The 
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shims serve to place the focal point of the silicon lens 1 mm in front of the dipole 

antenna.  In this way, the image, formed by the spherical mirror and located 17 mm in 

front of the silicon lens, is once again imaged with size reduction and inversion onto the 

image plane of the silicon lens wherein lies the receiver’s dipole antenna.  Figure 3-5 

shows a diagram of this imaging. 
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Figure 3-4. THz receiver details. (a) side view of assembly, (b) view of assembly 

showing antenna orientation, (c) scale diagram of receiver chip with dipole 
antenna and laser focus (shown in gray).   
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Figure 3-5.  Scale diagram of imaging through hyper-hemispherical silicon lens. 
 

With the THz image projected on it, the dipole antenna is photoconductively 

switched by a second 80 fs optical pulse, split from the first and appropriately delayed in 

time.  The optical pulse train arrives at the receiver with an average power of about 

11 mW and is focused onto the gap between the poles of the antenna by a 10 mm focal 

length, plano-convex lens.  Each pulse produces free carriers that generate a DC current 

proportional to the instantaneous electric field amplitude of the incident THz pulse.  By 

measuring this current while changing the relative delay between the detected THz pulse 

and the optical gating pulse, the entire time-dependence of the THz pulse can be 

recorded. 

To increase the signal-to-noise ratio (SNR), the THz radiation is passed through 

an optical chopper just after it exits the transmitter.  A lock-in amplifier is used to 

measure the small average receiver current modulated at the chopper frequency.  A 

computer is used to poll the lock-in and record the data.  The resulting THz record has a 

typical SNR of about 100 and preserves both phase and amplitude information, but 

represents the measurement of only a single spatial point in the image; a single spatial 



 32 

sample, E(t), for some constant x, y and z.   

In order to record an entire image, the image must be translated in front of the 

receiver and sampled point-by-point.  To preserve laser alignment and absolute pulse 

timing information, everything in the system, except the object, is fixed in its position.  

Due to the optical imaging configuration, translating the object creates the necessary one-

to-one translation of the image in front of the receiver.  Similarly, the reduced image 

projected onto the receiver’s antenna translates proportionally.  A single measurement 

(spatial sample) is recorded while the object is fixed at some position (x0,y0,z0).  The 

result is a time-dependent measurement E(x0,y0,z0,t), a current (in picoamperes) verses 

time-delay (in picoseconds) measurement, where, as stated before, the measured current 

is proportional to the electric field amplitude.  This process is repeated for different 

positions of the object in (x,y,z) and each measurement is a sample of the overall image.  

The final resulting data set consists of a set of time-dependent field measurements, one 

for every spatial sample point.  Since the data is recorded in digital form, each time-

dependent measurement is a waveform consisting of a collection of discrete temporal 

measurements.  These are temporal samples of the time-dependent waveform and must 

be distinguished from the previously mentioned spatial samples of the image.  Typically, 

spatial samples are separated by 100-150 µm in both the x and y directions and each 

spatial sample waveform consists of 256 discrete temporal measurements spaced by 

either 33.3 fs or 66.7 fs. 

Figure 3-6 shows a detailed view of the object mounting apparatus.  In order to 

translate the object (and image), it is mounted on two perpendicular, motorized, linear-

translation stages.  This allows the object to be translated anywhere within a single xy-
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plane, normally oriented perpendicular to the system optical axis (z-axis).  The translation 

stages themselves are mounted on a custom fabricated goniometric and rotary 

combination stage.  This allows the plane of translation (or scan plane) to be tilted with 

respect to the system optical axis, while keeping the object nearly fixed in space.  The 

goniometric stage allows the scan plane to be rotated or tilted about the x-axis and the 

rotary stage allows it to be tilted about the y-axis.   During any single image recording, 

the orientation of this plane is kept constant.  The motivation for tilting the scan plane is 

to make possible synthetic phased-array imaging, which will be explained in detail in 

chapter 5. 

 
 

 
Figure 3-6. Object mounting apparatus.  The motorized translation stages are marked 

with an x and y.  Scan plane shown tilted –10° about the x-axis. 
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The object is mounted on the front of a paraffin wax holder, which itself is 

mounted to the motorized translation stages via a cantilever attached to its back.  The 

holder is not meant to be imaged along with the object but only to serve as a mount.  

Therefore, it is shaped in a stealth fashion such that any radiation incident upon it will be 

scattered in a direction away from the spherical collection mirror.  Furthermore, the 

paraffin holder has a low refractive index (about 1.6) for the broadband THz region [32].  

Together, these two properties make the holder essentially invisible. 

Since there are significant water vapor absorption lines [15] in the far-infrared 

region of the spectrum, the entire setup is enclosed in an air-tight box that is purged with 

dry air during data collection. 

 

3.3  Link to Ultrasonic Imaging 

Ultrasonic imaging is a mature technology that has much in common with THz imaging.  

Notably, both technologies use pulsed temporal signals to illuminate objects, and both 

technologies use coherent signal reception, thereby preserving both phase and amplitude 

information.  Therefore it is not surprising that the resulting data sets have very similar 

forms.  Following the descriptions given in [33], the similarities are easily seen. 

In the THz imaging system, a single temporal measurement (single spatial 

sample), has the form E(t).  This is completely analogous to the A-scan in ultrasonic 

imaging, which represents the reflected ultrasonic signal as a function of time.   

Further, the ultrasonic imaging B-scan is a collection of A-scans used to form a 

one-dimensional image.  Successive A-scans are taken at different spatial locations and 
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together they form a two-dimensional data set of the of the form A(x,t), a sectional 

amplitude image of the object.  Exactly the same procedure is used to create a one-

dimensional THz image.  Multiple spatial samples are collected along one spatial 

direction and the resulting data set has the form E(x,t). 

Finally, a two-dimensional THz image can be formed by collecting multiple 

spatial samples along two directions.  The result is a data set of the form E(x,y,t).  In 

ultrasonic imaging this is called a C-scan and is simply a set of A-scans collected at 

various spatial locations in x and y. 
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Chapter 4     

Point Source Imaging 

 

 

The first images recorded by the THz imaging system were those of objects which 

behaved as point sources.  Such objects make it possible to determine the resolving 

power of the system.  Particularly, the image of a point source determines the system’s 

amplitude point spread function (PSF), or equivalently, its spatial impulse response.  

Since the THz system is broadband, this PSF is also broadband and applies to many 

frequencies at once.  The system is well-corrected, so the resulting images are limited 

only by diffraction and measure the resolution of the system. 

 

4.1  Single Point Source 

A 1 mm diameter, chrome-plated, steel ball was used as the first object to image.  To a 

very good approximation, this ball can be treated as a point source.  This is due to the fact 

that short pulses are used for illuminating the object, and that the effective cross-sectional 

scattering area is much smaller than the ball itself.  The short pulses allow the specular 

reflection to be temporally separated from surface waves or other higher order scattering 

products.  Then, to isolate the specular reflection, it is only necessary to gate out the 

unwanted scattering data which appears later in time.  Next, Figure 4-1 shows how only a 
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small solid angle portion of this object actually scatters specular radiation in the direction 

of the spherical mirror.  The spherical mirror subtends only 0.049 steradians at the object, 

and thereby restricts all detectable rays to a maximum reflected angle of 7.1˚ with respect 

to the system optical axis.  For a 1 mm ball, this restriction makes the effective visible 

spot only 62 µm in diameter, sufficiently small to be considered a point source.  This also 

makes it possible for the 1 mm ball to produce images smaller than itself, given sufficient 

system resolution.  
 

 

θmax=7.1° 

θmax 
dmax=62µm 

 
 

Figure 4-1. Point source justification for 1 mm ball.  Dashed lines indicate incident and 
reflected THz rays. 

 

The ball was scanned and sampled in the x direction only, so the resulting image 

was one-dimensional.  The image consisted of 41 spatial samples spaced by 150 µm 

thereby covering a range from x = -3 mm to 3 mm.  To ensure the object was centered 

near x = 0 mm it was coarsely placed into position then adjusted slightly until the 

measured signal was nearly maximized.  This position was then assigned the value x = 0.  
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Each spatial sample was an 8.5 ps time-dependent waveform consisting of 256 data 

points, each separated by 33.3 fs.  The strongest of the waveforms, and its spectrum, is 

shown in Figure 4-2 and exhibited the peak signal-to-noise ratio for the image of 95. 

Figures 4-3 and 4-4 show the image in various forms.  The image can be 

described as a fin shape lying at some angle with respect to the x-axis.  This angled 

orientation is shown most clearly in Figures 4-3 and 4-4b and is due to off-axis 

illumination of the object.  As the object moves in the positive or negative x direction, the 

path length from the transmitter to the object changes causing earlier or later arrival times 

for the illuminating THz pulses to the receiver, respectively.  The figures appear reversed 

from this situation because of the method by which they were plotted.   

 

 

 
 

 
 

Figure 4-2. Single spatial sample (x = 150 µm) of 1 mm ball image.  Data points are 
shown as filled circles with connecting lines for clarity.  Normalized 
amplitude spectrum is shown inset 
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Due to the sampling nature of the system, as the object moves in the +x direction, the 

receiver samples the –x side of the image.  Plotting the images in the fashion of Figures 

4-3 and 4-4 reverses this sampling phenomenon and makes the –x side of the image 

correspond to the –x side of the object. 

 

 

 
 
 
 

Figure 4-3.  THz image of 1 mm ball.  Plot is composition of curves constant in x.  
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Figure 4-4. THz image of 1 mm ball.  Side view (a) is a composition of curves that are 
constant in time.  Contour plan view (b) with contour separation of 10 pA.  
Negative contours are indicated by dashed curves. 
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The images also show that the range resolution is much sharper than the spatial 

resolution.  Using the 530 fs pulse measurement shown in Figure 4-2, the range 

resolution is 80 µm.  The spatial resolution of the system is quantified using the FWHM 

measurement of the image, which is about 1.8 mm.  Assuming the system is well-

corrected, these values define the normal diffraction-limited resolution.  Since the object 

is a point source, the images of Figures 4-3 and 4-4 define the broadband PSF of the 

system. 

 

4.1.1  Diffraction Test by Mirror Size Reduction 

To determine if the system is operating in the diffraction limit, it is necessary to 

know the most limiting aperture in the system.  Using geometric optics, the most limiting 

aperture of the system can be found to be the spherical mirror.  Figure 4-5 is a scaled 

diagram showing that rays coming from the outer edge of the spherical mirror are not 

further apertured by the silicon lens mounted to the receiver. 

One way to test if the system was limited by diffraction was to reduce the 

diameter of the most limiting aperture, the spherical mirror.  If the system had large 

geometric aberrations, reducing the mirror size would not have reduced the image size 

significantly.  If the system was well-corrected, reducing the diameter of the spherical 

mirror should have produced a proportional increase in the FWHM measurement of the 

spatial extent of the image, noticeably worsening resolution.   
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Figure 4-5.  Scale diagram of geometric cone of THz rays impingent on receiver. 

 

Therefore, the 1 mm ball experiment was performed again, this time with the spherical 

mirror diameter halved.  To reduce the diameter of the mirror, an annular absorber was 

placed over the face of the spherical mirror.  The absorber was a woven graphite cloth 

with a 76.2 mm diameter hole cut from the center.  This cloth absorbs THz quite well and 

absorbed the THz that struck the outside annulus of the mirror. 

Figures 4-6, 4-7, and 4-8 show the resulting image data.  The peak signal-to-noise 

ratio for this image was 26.  As before the image is angled with respect to the x-axis.  The 

spatial resolution was worsened, as indicated by the increase of the FWHM extent of the 

image to 3.1 mm.  The temporal resolution was unchanged since the profile of the THz 

pulse did not change.   

The signal amplitude was decreased by approximately a factor of three.  The 

expected decrease in signal amplitude was a factor of about two, since the area of the 

spherical mirror was reduced by a factor of four, and the field amplitude of the radiation 

reflected from the mirror is proportional to square root of the area.  The change in spatial 
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resolution was 1.72 times, not exactly proportional to the decrease in aperture size.  The 

deviations of these values from the expectations are explained presently. 

 

 
 

Figure 4-6. Single spatial sample (x = 0 mm) of 1 mm ball imaged with 76.2 mm 
diameter spherical mirror.  Data points are shown as filled circles with 
connecting lines for clarity.  Normalized amplitude spectrum is shown inset. 
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Figure 4-7. THz image of 1 mm ball imaged with 76.2 mm diameter spherical mirror.  
Plot is composition of curves constant in x. 
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Figure 4-8. THz image of point source imaged with 76.2 mm diameter spherical mirror.  
Side view (a) is a composition of curves that are constant in time.  Contour 
plan view (b) with contour separation of 2.5 pA.  Negative contours are 
indicated by dashed curves. 
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First, the mismatches between the actual and expected amplitude decrease and 

resolution loss are not wholly unreasonable given the signal-to-noise ratios for the 

images.  Nevertheless, the discrepancies could be explained by a minor receiver or 

spherical mirror misalignment, either of which would result in an excess loss of signal.  

The more likely explanation, however, is the combination of two effects.  First, the 

illuminating beam is not infinite in extent but has a 1/e beam diameter of about 14 mm.  

For the smaller spherical mirror, the FWHM extent of the image is larger and therefore 

the object is more visible when it is further out from the peak of this illumination.  The 

resulting illumination intensity drop causes an artificial decrease in the spatial extent of 

the resulting image.  Second, the silicon lens in the receiver might not perfectly project 

the image formed by the spherical mirror onto the dipole antenna.  This could not only 

cause the peak signal amplitude discrepancy but could also change the spatial extent of 

the image. 

Actually, the previous discussion of discrepancies assumed the simple view that 

the FWHM extent of the image should double and the peak signal amplitude should halve 

by halving the diameter of the spherical mirror.  This is not precisely the case for a 

broadband system due to the interference between different frequency components.  As 

will be shown in chapter 6, halving the diameter of the spherical mirror produces an 

increase in the FWHM extent of the image by a factor of 1.85.  If the profile of the 

illumination beam is taken into account, this factor reduces to 1.78, thus agreeing very 

well with the collected data.  This not only shows that the system is operating very near 

to the diffraction limit but also that the effect of the receiver can essentially be 

disregarded.  In fact, as will be shown, it was found that the receiver, as a whole, 
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essentially behaved as an ideal sampler of the image formed by the spherical mirror.  

Consideration of the peak signal amplitude is only important because it provides a 

practical lower limit to the extent of the spherical mirror.  In other words, if the mirror is 

made too small, signals would become buried in noise. 

 

4.1.2  Point Source Verification 

In order to verify that the object was sufficiently small to justify the point source 

approximation one final test was performed.  In this test the object was changed to a 

chrome-plated, steel ball with a diameter of 391 ± 3 µm.  The graphite cloth was not 

present during this experiment so the aperture of the spherical mirror was the normal 

152.4 mm diameter.  As before, any rays impingent on the spherical mirror must fall 

within an angle of 7.1° from the system optical axis.  For a 391 µm ball, this restriction 

makes the effective visible spot only 25 µm in diameter. 

Figures 4-9, 4-10, and 4-11 show that the spatial resolution is almost exactly the 

same as that of the 1 mm ball.  The 391 µm ball has a spatial FWHM measurement of 

1.9 mm.  This indicates that both the 1 mm ball and the 391 µm ball could be considered 

point sources.  Similarly, with a pulse width of 560 fs, the range resolution is 84 µm, 

almost identical to the 391 µm ball. 

Two main differences in the images of the 1 mm ball and the 391 µm ball are 

apparent.  First, the signal amplitude from the smaller ball has dropped by a factor of 2.8.  

This can be explained by considering the total reflecting area of the object.  The diameter 

of the two balls differs by a factor of 2.6.  Therefore the visible area on the smaller ball 
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was reduced by a factor of (2.6)2 = 6.54, compared to the 1 mm ball.  Hence the field 

amplitude should fall off by a factor of 2.6.  This matches quite well with the actual 

reduction in signal amplitude. 
 
 
 
 

 
 
 

Figure 4-9. Single spatial sample (x = 0 mm) for the 391 µm diameter ball image.  Data 
points are shown as filled circles with connecting lines for clarity.  
Normalized amplitude spectrum is shown inset. 
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Figure 4-10.  THz image of 391 µm ball.  Plot is composition of curves constant in x. 
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Figure 4-11. THz image of 391 µm ball.  Side view (a) is a composition of curves that 
are constant in time.  Contour plan view (b) with contour separation of 
2.5 pA.  Negative contours are indicated by dashed curves. 
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The second main difference between the images is the presence of a second pulse 

in the image of the 391 µm ball, labeled “2nd Pulse” in Figure 4-9.  This feature occurs 

later in time and has a smaller amplitude than the main reflection.  Given the small size of 

the ball, it is possible that the feature is either a weak reflection from the paraffin holder 

or a creeping wave which traveled around the circumference of the ball and was re-

radiated back toward the spherical mirror.  Such features would not be visible on the 

image of the larger ball since they would be too delayed in time to appear within the 

recorded time window.  The periodic dips in the amplitude spectrum shown in Figure 4-9 

are the obvious effects of the second pulse. 

Using some radar theory similar to [31], one can calculate the return waveform 

for a plane wave pulse incident on a conducting sphere.  The calculation includes both the 

specular reflection and the creeping wave.  Using typical THz pulses, this calculation 

yields similar waveforms to the one seen in Figure 4-9.  It is noted, however, that the 

calculation does not account for the fact that the ball is only half surrounded by paraffin.  

Preliminary calculations indicate that this fact changes the delay between the pulses.  

Whereas the actual data shows the 2nd pulse somewhere around 4 ps later than the initial 

pulse, the radar calculation predicts the pulse would exist between 3 ps and 6 ps, 

depending on the whether the medium surrounding the ball is either air or paraffin, 

respectively.  Moreover, pulse reshaping makes these delays difficult to measure, so the 

origin of this 2nd pulse remains inconclusive.  Since it was not the goal of this experiment 

to investigate the detailed radar behavior of the system, the 2nd pulse was not further 

pursued.  Suffice to say, such multipath effects can certainly become an issue in imaging 

more complicated objects.  In fact, another multipath effect manifests itself in a later 
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experiment discussed in section 5.7.  Though it is not a creeping wave, it nevertheless 

causes undesirable, clutter-like features in the image of two small balls. 

 

4.2  Two Point Sources 

To further demonstrate the resolution of the system two 1 mm balls were mounted 

together to form a double point source object.  Successful imaging of this object would 

verify the resolvability of individual features on a more complex structure.  The two balls 

were mounted onto a paraffin wax holder such that they were separated by about 1.4 mm 

in x and 1.1 mm in z, as shown in Figure 4-12.   
 

 

1.1 mm 

1.4 mm 
Wax 

x 

z 

 
 

Figure 4-12.  Two point source object comprised of two 1 mm balls. 
 

The object was scanned and sampled in the x direction only, so the resulting 

image was one-dimensional.  The image consisted of 61 spatial samples spaced by 

100 µm and covered a range from x = 0 mm to 6 mm.  To ensure the overall object was 
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centered near x = 3 mm it was coarsely placed into position then adjusted slightly until 

the measured signal from the earlier reflection was maximized.  This maximum signal 

position was then assigned the value x = 2.4 mm.  Each spatial sample was a 17 ps, time-

dependent waveform consisting of 256 data points, each separated by 66.7 fs.  This is 

double the duration of the single point source images in order to fit both balls into the 

image. 

Figure 4-13 shows a single temporal measurement E(x = 2.4 mm, t) from the 

resulting image.  The arrows indicate the pulse width, 540 fs, used for calculating the 

range resolution of 81 µm.  Figures 4-14 and 4-15 show the overall one-dimensional 

image.  The peak SNR of the image was approximately 85.  The FWHM spatial extent of 

each ball image is 1.8 mm, unchanged from that of the single ball image and the figures 

show how the two balls are easily resolvable. 
 
 

 
 

Figure 4-13. Single spatial sample (x = 2.4 mm) of image of two 1 mm balls.  Data 
points are shown as filled circles with connecting lines for clarity.  
Normalized amplitude spectrum is shown inset. 
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Figure 4-14.  THz image of two 1 mm balls.  Plot is composition of curves constant in x. 
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Figure 4-15. THz image of two 1 mm balls.  Side view (a) is a composition of curves 
that are constant in time.  Contour plan view (b) with contour separation of 
10 pA.  Negative contours are indicated by dashed curves.  Dots indicate 
peak locations. 
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One interesting consequence of the high temporal resolution is that it makes it 

possible for two objects to be better spatially resolved.  To understand this, recall the 

Rayleigh and Sparrow resolution criteria discussed in section 2.3.  For an imaging system 

that measures intensity, these criteria are based on the extent to which two point source 

images smear together spatially.  As intensity images become closer, they add together 

into one un-resolvable unit.  For the THz imaging system, two point source images 

resolved in time never smear together spatially because they exist at different times.  

While temporally resolved, they can never smear together to form an un-resolvable unit.  

Therefore, the two images can become very close to one another from a transverse point 

of view, yet maintain their spatial resolution.  This concept is easy to see in Figure 4-15a 

and represents a significant spatial resolution advantage for pulsed imaging systems.  

Note that this is a coherent, two-point, spatial resolution phenomenon and, even though 

such phenomena are understood [23, Sec. 6.5.2], they seem to be rarely applied to pulsed 

systems.  Nevertheless, the pulsed system brings out some interesting effects wherein the 

definitions of resolution have to be somewhat reconsidered. 

Finally, the distance measurements between the image peaks in both the x 

direction and the z direction are 1.38 mm and 1.09 mm respectively, thus matching the 

original physical measurements very closely.  Also, the peak amplitude of both peaks 

matches to within 2% as one would expect.  This experiment demonstrated the ability of 

the THz system to properly image extended targets. 
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Chapter 5     

Synthetic Phased-Array Imaging 

 

5.1  History of Aperture Synthesis 

For its great ability to increase resolution in imaging systems, apertures synthesis (AS) 

was a monumental concept.  The foundation of the idea was stellar interferometry:  an 

idea first conceived by H. Fizeau in 1868 [34].  A.A. Michelson was the first to 

successfully use this technique to measure the diameter of Jupiter’s satellites in 1891 

[35].  With this technique, Michelson found that he could very accurately measure the 

diameters of distant objects by converting a normal telescope into an interferometer.  He 

did this by placing a cap containing two parallel slits over a normal telescope aperture.  

The two slits formed interference fringes which could be used to infer the size of the 

astronomical source.   

With the ability to measure phase at radio frequencies these interferometric 

techniques developed into the idea of aperture synthesis.  In this form, AS was a method 

whereby the information gathering capability of a large aperture was synthesized by 

measurements with an interferometer of two elemental apertures, one fixed and the other 

movable to all positions within the large aperture [36].  Radio astronomers began using 

this technique to increase the resolution of their telescopes over 40 years ago [37] and 

continue to do so today [38,39].  Such techniques not only permitted increased resolution 
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but also eventually allowed scientists to steer the direction in which their telescopes 

looked, without physically moving antennas.   

Similar systems are often termed phased-arrays or adaptive arrays, since AS is 

implemented by an array of transmitters and/or receivers to which variable complex 

weights are applied.  Some of the more familiar applications are found in modern radar 

systems and consist of rapid electronic beam-forming and beam-steering.  These 

applications can be used to quickly reshape side lobes and thereby reduce multipath 

effects, clutter, and other natural noise sources [40]. 

About 30 years ago Labeyrie took Michelson’s work a step further by introducing 

the first interferometric optical telescope [41] in which light was collected and mixed 

from two independent optical telescopes.  His work set the foundation for more 

complicated optical AS.  Since then, optical AS for ground-based optical astronomy has 

greatly improved [42] and can yield images with resolution unobtainable by conventional 

ground-based, or even space-based, telescopes.   

AS techniques have also found their way into many other forms of remote sensing 

and visualization.  Today, AS is routinely used to generate high-resolution images at 

microwave frequencies.  This well-known practice is termed synthetic aperture radar 

(SAR) and is currently the best method to obtain high-resolution, microwave images of 

Earth.  Other forms of microwave imaging use inverse SAR principles [43,44] or 

deconvolution methods which have already been used to generate THz images [10,46].   

Finally, ultrasonic imaging has also benefited greatly from AS.  Ultrasonic AS has 

successfully been implemented in sonar [47] and medical imaging systems [48].  Indeed 

AS has become its own field of study sometimes called Fourier Array Imaging and has 
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found further application in computerized tomography (CT), magnetic resonance imaging 

(MRI), positron emission tomography (PET), surveillance radar and many other places 

[49]. 

However, AS it is not fit for every application.  For AS to work, various phase 

relationships between system components must be well established.  It is in this respect 

optical systems often suffer because most optical detectors are incoherent.  Moreover, in 

cases where optical mixing can make AS possible, as in modern optical astronomy, very 

stringent component positioning is required because of the short wavelength of optical 

radiation. 

 

5.2  Aperture Synthesis in THz Imaging 

Due to its coherent nature and relatively long wavelengths, the THz imaging system is a 

prime candidate for the application of AS.  Since previous experimental results showed 

that the THz imaging system was well-corrected and operated in the diffraction limited 

regime, it was decided to attempt AS to increase resolution.  As explained in section 2.4 

and evidenced in section 4.1.1, the resolution capability of the system is determined by 

two main properties:  operating frequencies (bandwidth) and angular extent of the exit 

pupil (limiting aperture).  Aperture synthesis improves the resolution by increasing the 

size of the exit pupil. 

Since the extent of the spherical mirror defines the exit pupil, one way to increase 

resolution is to install a larger spherical mirror.  However, this is a physically difficult 

solution requiring a complete redesign of the system layout.  The layout would require a 
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less folded path in order to avoid clipping the THz beam with optical components, but a 

less folded path would result in greater off-axis aberrations such as astigmatism and 

coma.  Finally, if the spherical mirror was too big, it would cease to be the most limiting 

aperture in the system.  In this case, the silicon lens on the receiver would become the 

more limiting aperture.  Figure 4-5 showed how this is not a problem with the original 

spherical mirror.  All these consequences make installation of a larger spherical mirror an 

unattractive and, in many ways, unusable method to improve resolution.  AS provides a 

method by which these problems can be circumvented. 

 

5.3  Aperture Synthesis Realization 

To implement AS it is necessary to add into the system another spherical mirror adjacent 

to the first.  Such an arrangement would take the form of Figure 5-1.  It shows the system 

with the additional spherical mirror (henceforth called the “synthetic mirror”) placed 

below the original and sharing the same center of curvature as the first.  The reason the 

mirror is labeled “synthetic spherical mirror” will become clear.  In this arrangement the 

mirrors are really only two portions of one larger spherical mirror.  Together they form a 

sparse aperture of approximately double the original size in the y direction, but 

unchanged in the x direction.  Each mirror is an element of a phased-array, so the total 

system can be regarded as a phased-array THz imaging system. 

As in any imaging system, the phased-array increases the overall extent of the 

imaging aperture and thus improves the system’s resolution.  The phased-array idea is 

easy to understand but considerably more difficult to physically implement.  To do so 
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would require accurate placement of the synthetic mirror to within fractions of a THz 

wavelength, or approximately 15 µm, in all directions.  Furthermore, such a mirror would 

introduce some of the same unavoidable difficulties caused by a larger single mirror.  

Chief among these is the fact that the larger extent of the phased-array would cause the 

silicon lens mounted on the receiver to become an aperture limiting component.  Figure 

5-2 is a scaled illustration of this situation.   
 
 
 
 

 

 
Figure 5-1. Phased-array THz imaging system with second spherical mirror located 

beneath the original.  Both mirrors share a common center of curvature at the 
origin.  The inset shows a detailed view of the object and two scan planes (xy 
and xy’). 
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In the figure, the dotted line indicates the lower boundary of rays coming from the 

original mirror, or equivalently, the upper boundary of rays coming from the synthetic 

mirror.  The solid lines indicate the boundaries for rays from the entire phased-array 

aperture.  As the figure shows, rays coming from the lower edge of the synthetic mirror 

never even intersect the lens.  Thus, the small diameter of the lens acts as an aperture stop 

limiting the extent of the entrance pupil.  Such unavoidable effects make physical 

implementation of the phased array unusable. 
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Figure 5-2.  Scale diagram of THz beam for phased-array.  Solid lines indicate boundary 
of rays propagating from both mirrors.  Dashed line indicates shared 
boundary. 

 

There is an alternative method by which the phased-array can be implemented and 

takes advantage of the fact that the object is scanned in the xy-plane such that the image 

can be sampled.  Consider the process of image formation once again.  In the normal 

imaging configuration, spatial samples are acquired by scanning the object in the 

xy-plane, which is normal to the system optical axis.  Imagine if the synthetic mirror was 

physically implemented during this process.  Figure 5-3 shows a side view of the system 
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operating in this manner.  As the object scans in the xy-plane its relative motion appears 

different from the vantage of the original and synthetic spherical mirrors.  From the 

vantage of the original mirror the scan plane appears as it normally does.  From the 

vantage of the synthetic mirror, this same scan plane appears tilted about the x-axis by the 

angle defined by the angular separation of the two mirrors, in this case 14.25°.  For both 

cases, the scan plane is the same, but the object motion appears different. 
 

 scan (xy) plane 

 xz-plane Original 
Mirror 

Synthetic 
Mirror 

14.25° 
tilted (xy’) plane 

 
 

Figure 5-3. Side view of phased-array THz imaging system.  Normal and tilted scan 
planes shown as solid and dotted lines respectively. 

 

Consider now the case where the object is self-luminous and data are collected by 

the system in the configuration shown in Figure 5-3, with the exception that the original 

spherical mirror is removed.  That is, the synthetic mirror alone is used to collect data 

while scanning the object in the normal (xy) scan plane.  Such data would be effectively 

equivalent to data generated by using the original spherical mirror alone while the object 

scanned in the plane tilted 14.25° (denoted by the dotted line in Figure 5-3).  In other 

words, by scanning the object in the tilted (xy’) plane, the real spherical mirror is forced 

to see the object from the viewpoint of the synthetic mirror.  In this way it is possible to 
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generate the data that would be collected by the synthetic mirror without ever 

implementing it physically.  For this reason the lower spherical mirror is called the 

synthetic mirror.  Furthermore, the continuous variability of the tilt of the scan plane 

makes it possible to place this synthetic mirror in any location around the actual spherical 

mirror, even locations in which the mirrors’ extents overlap.  Since this method 

implements a phased-array by virtue of a synthetic mirror, this method of aperture 

synthesis is called synthetic phased-array THz imaging.   

 

5.4  Phased-Array Imaging 

As described in section 3.2, the object is mounted on a goniometric/rotary combination 

stage that allows the scan plane to be tilted or rotated about the x and y axes.  Figures 5-1 

and 5-3 showed a scan plane tilted about the x-axis only.  Tilting about the x-axis 

effectively places a synthetic mirror above or below the original mirror whereas tilting 

about the y-axis places a synthetic mirror to the left or right of the original mirror.  The 

actual location of the synthetic mirror is determined by the angle of tilt in either or both 

directions. 

A phased-array image is formed by multiple iterations of normal image 

generation.  Separate images are recorded, each being generated from one individual 

mirror of the phased-array.  Equivalently, each image is generated using a single, unique 

and fixed scan plane orientation.  As will be discussed, all the individual images are 

coherent, amplitude images, with established phase relationships.  Since the individual 

images are coherent they can be numerically superposed, creating the synthetic phased-
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array image:  a higher resolution THz picture of the object. 

Images generated in this fashion will exhibit higher resolution only in the 

direction in which the overall aperture extent was widened.  For example, when the scan 

plane is tilted about the x-axis, a synthetic mirror is created either above or below the 

original mirror and the effective aperture of the phased-array is then widened only in the 

vertical y direction.  Therefore resolution will be increased in the y direction only.  

Similarly, if the scan plane is tilted about the y-axis, resolution will be increased in the x 

direction. 

Synthetic phased-array imaging does not suffer from many of the problems 

outlined for real phased-array imaging.  Whether the actual spherical mirror acts as either 

a normal imaging mirror or as a synthetic mirror, the system behaves just as it would in 

the normal imaging configuration.  The only thing used to create the phased-array is the 

simple alteration of the scan plane of the object.  The remainder of the system is 

unchanged. 

 

5.5  Synthetic Array Details 

The equivalence between using the synthetic mirror created with a tilted scan plane and 

using the normal scan plane with an additional real mirror actually installed in the system 

requires more discussion.  For the benefit of this discussion, each case is given a different 

name.  The case in which two real mirrors are implemented in the system and the object 

is scanned in the normal xy-plane is termed the real case, because this is the configuration 

of the system if a real phased-array was actually built.  The case in which the original 



 66 

spherical mirror is used with the tilted scan plane to implement a synthetic mirror is 

termed the synthetic case.  Even though the end effect of synthetic phased-arraying is 

effectively equivalent to actual phased-array imaging, the mechanisms in each case are 

somewhat different.  These mechanisms will now be discussed for both the vertical and 

horizontal arraying case. 

 

5.5.1  Vertical Arraying 

In the real case, the image plane (or reception plane) is coincident with the (xy) 

scan plane, as shown in Figure 5-4.  This is simply due to the orientation of the receiver, 

whose axis is always considered normal to the image plane.  It is clear that the rays (and 

the phase fronts) coming from the real lower mirror intersect the image plane at some 

angle.  Using spatial frequency concepts, we see that this angle introduces high spatial 

frequency components into the image.  These components interfere with those in the 

image from the original mirror to yield a higher resolution composite image. 
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Figure 5-4.  Relationship between spherical mirrors, scan plane, and image plane in a real 
array. 

 

In the time domain, the angle between the image plane and the phase fronts is 

manifest as a slight shifting in time of the pulse.  Consider Figure 5-5a, which shows the 

phase fronts of a wave issuing from some section of the lower mirror.  If the receiver is 

sampling at point A, there will be a delay of δtA in the phase front compared to when the 

receiver samples point B.  Similarly, if the receiver samples at point C, there will be an 

advance of δtC in the phase front, compared to point B.  Figure 5-5b shows how these 

delays are not the same when the wave is issuing from the original spherical mirror.  

When the two phase fronts from each mirror are added together it is this decoherence in 

phase at the outer portions of the image that causes the interference which consequently 

sharpens the image.  Therefore, the enhancement of resolution that accompanies the 

addition of the real, lower spherical mirror is directly due to the fact that the image plane 

is angled with respect to incoming phase fronts from the lower mirror. 
 
 



 68 

 

B 

C 

A 

Image plane 

δtC 

Phase fronts 
from real 
lower mirror 

δtA 

B 

C 

A 

Image plane 

δtC 

Phase fronts 
from original 
mirror 

δtA 
(a) (b) 

 
Figure 5-5. Relationships between image plane and phase fronts from (a) real lower 

mirror, (b) original mirror. 

 

The resolution increase accompanying the synthetic case is due to a different, yet 

similar, mechanism.  In order to strictly mimic the exact behavior of a real lower mirror 

by means of the original mirror, it would be necessary to rotate the object, scan plane, 

and image plane, such that the original spherical mirror sees everything as the lower 

mirror would if it were implemented. Such a setup is illustrated in Figure 5-6a, where, 

along with the other components, the receiver and image plane have been rotated.  

However, when synthetic phased-array imaging is performed in the THz system, the 

receiver (and image plane) is not actually re-oriented.  Such a re-orientation of the 

receiver is not possible for several reasons including the fact that it would drastically 

affect laser alignment and destroy the absolute timing reference in the system.  Instead, 

only the scan plane is rotated, or tilted, as shown in Figure 5-6b. 
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Figure 5-6. Relationship of scan plane, image plane and real mirror for synthetic 
arraying.  (a) strict equivalence between synthetic mirror and lower mirror 
achieved by rotating image plane and receiver, (b) actual arrangement in 
synthetic phased-array THz imaging system, image plane not rotated. 

 

It is obvious then, that the synthetic case is not strictly equivalent to the real case.  The 

original mirror (acting as a synthetic mirror) and the phase fronts issuing from it are no 

longer angled with respect to the image plane, as they were in the real case.  Therefore, 

the mechanism by which resolution is enhanced must be different.  The phase shifts 

necessary to enhance the resolution in this synthetic case come from the fact that the scan 

plane acquires an angled relationship with the image plane.  Figure 5-7a helps to illustrate 

this in terms of phase fronts.  As the object moves in the tilted scan plane the phase fronts 

from the original mirror also acquire a tilt.  The tilted phase fronts manifest themselves as 
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timing delays or advances.  Therefore, the final relationship between the phase fronts and 

the receiver plane in the synthetic case, shown in Figure 5-7a is equivalent to that of the 

real case, shown in Figure 5-7a. 
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Figure 5-7. Comparison of relationship between phase fronts and image plane for 
(a) synthetic array case, (b) real array case. 

 

To summarize these concepts, the final result of synthetic arraying is the same as 

that of real arraying, even though the two are not strictly equivalent in terms of their 

mechanisms.  In the real case, the mechanism by which two images interfere to form a 

higher-resolution image is the angled orientation between the image plane and the phase 

fronts issuing from the mirrors.  The scan plane and image plane are coincident; therefore 

their relationship introduces no further phase effects.  In the synthetic case, the scan plane 

and image plane are no longer coincident; therefore their angled relationship introduces 

the phase effects by which another mirror is synthetically modeled.  However, the image 

plane is no longer angled with respect to the mirror axis or the phase fronts issuing from 

it; so no phase effects arise from this relationship.  This tradeoff in mechanisms permits 
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successful synthetic phased-array imaging in the THz system, while removing the need 

for repositioning the receiver.  In the end, both the real and synthetic cases can be 

considered equivalent for THz imaging purposes.  

 

5.5.2  Horizontal Arraying 

Horizontal arraying is equivalent to vertical arraying in that synthetic arraying is 

only effectively equivalent to real arraying, due to the fact that the image plane is not 

re-oriented.  All the accompanying discussions regarding the mechanisms by which 

resolution is increased in vertical arraying are equally applicable to horizontal arraying.  

However, there is one additional effect present in horizontal arraying due to the off-axis 

nature of the system.  Figure 5-8a shows a top view of the system with a phased-array 

mirror located to the right (+x direction) of the original mirror.  Both mirrors share a 

common center of curvature and therefore, together, they behave as a single sparse 

aperture mirror.  However, making the original mirror see the object from the vantage of 

the phased-array mirror cannot be strictly done by rotating the scan plane about the 

y-axis.  Instead, the object and scan plane must be rotated about a vertical axis which 

goes through the center of curvature of the mirrors, marked by a star in the figure.  As 

discussed in the previous section, the image plane (or receiver) is not concurrently moved 

in the process.  Therefore, tilts about the center of curvature cause very large shifts in the 

arrival time of the image to the receiver.   Consequently, the two images, one formed by 

the original mirror the normal configuration and one formed from the original mirror 

synthetically acting as the phased-array mirror, do not overlap in time and cannot 
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interfere properly to enhance the resolution of the composite image. 

The remedy to this problem is simply rotating the scan plane about the y-axis.  

This causes an effective translation of the scan plane such that the images are once again 

aligned in space and time.  Rotation about the y-axis is effectively equivalent to rotation 

about the center of curvature of the mirror plus a translation of the object and scan plane.  

This translation allows both images, produced by the real mirror in the normal and 

synthetic configurations, to overlap in time and interfere properly to increase the 

resolution of the composite image.  The only additional effect of this translation is a 

slight change in magnification between the object and image.  Since the off-axis angle of 

the system is so small (10° full angle) this magnification is not significant.  Therefore, it 

is apparent that synthetic phased-array imaging need not be altogether equivalent to a real 

arraying.  Nevertheless, the method is still quite effective as will be shown. 
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Figure 5-8. Horizontal arraying details.  (a) scan plane must be rotated about center of 
curvature to allow original mirror to mimic phased-array mirror, (b) rotating 
about y-axis creates an effective translation of the object and image. 
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5.5.3  Image Coherence 

The necessary coherence of the images is due to two properties of the THz 

imaging system.  First, all the individual images are generated by the same single object.  

All the phased-array mirrors see the same object emitting the same wave-field, regardless 

of their orientation.  This provides the spatial coherence between multiple mirrors, and 

consequently, between multiple images.  Second, the object is illuminated by a pulsed 

THz beam that is measured coherently [16].  This provides the temporal coherence 

between images ensuring that they all remain locked in a constant phase relationship.  

The fact that the THz is pulsed makes it easy to measure this phase relationship, which is 

simply manifest as the temporal location of the pulse.  The following section discusses 

more details of this phase relationship. 

Coherence among the spatial samples in any single image is established by the 

precision of the motorized delay line, which is about 500 nm.  This translates into 3.33 fs 

of temporal precision, far better than required to maintain phase coherence among 

samples. 

 

5.5.4  Phase Reference 

For phased-array imaging to be successful, each individual, coherent image must 

have an established phase relationship with the others.  Since the THz imaging system 

uses short pulses for illumination, this phase relationship is easy to establish, for a point 

source.  As will be shown in section 5.7.2, it can be more difficult to establish for more 

complicated objects.  Phase reference establishment relies on the fact that each individual 
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image has its own associated scan plane containing unique points through which the 

object scans; yet all the scan planes share one common point, the origin.  When the object 

is at this point, all the individual images should exhibit zero relative phase with respect to 

each other.  Given the pulsed nature of the THz, the relative phase between images is 

manifest as simple timing shifts of the pulse. Therefore, zero relative phase can be 

established easily by ensuring that the waveforms (spatial samples) collected from each 

image at the origin overlap exactly.   A close overlap indicates that the object was in the 

same spatial location (the origin) for each image.  Figure 5-9 shows two such waveforms 

from a phased-array image.  Both are spatial samples (at the origin) of the image of a 

point source.  The solid line indicates the origin sample from the first image generated 

with the scan plane in the normal orientation.  The dashed line indicates the origin sample 

from the second image generated with the scan plane oriented –16° about the x-axis.  

Their close overlap ensures the object was in the same spatial location during each origin 

sample. 

Phased-array imaging, therefore, is accomplished by the following procedure.  A 

single image is recorded with the scan plane in some desired orientation.  The resulting 

data contains the spatial sample collected when the object was at the origin.  Following 

image recording, the scan plane is re-oriented to begin recording the image from a 

synthetic mirror.  Before recording another image, the object is carefully positioned such 

that the spatial sample at the origin overlaps closely with the previous one already 

recorded.  The careful positioning ensures that the origin is in the same place it was in the 

previous image, thereby establishing the phase relationship.   
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Figure 5-9.  Phase locked reference waveforms for two arrayed THz images. 
 

Imaging then continues as normal.  This process is repeated for every subsequent image.  

The overall result is that all the images are phase-locked to each other with a common 

absolute reference.  

 

5.5.5  Object Placement Accuracy  

To experimentally realize the phase locking procedure, it is necessary to have 

very accurate placement of the object before and during imaging.  Transverse placement 

is done by aligning the object to the crosshairs of a long-distance microscope mounted on 

a fixed kinematic base.  The microscope looks at the object along the system optical axis 

(in the –z direction) so the crosshairs register the object’s x and y position.  This results in 

a transverse placement accuracy of approximately 15 µm; more than sufficient as shown 

by the following spatial frequency calculation.  If φ is the full-angular extent of the mirror 

subtended at the axial image point, then the highest angular spatial frequency possible in 
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the image is ky = 2π·sin(φ)/λ = 12.89 mm-1, where φ = 14.25° and λ is 120 µm 

corresponding to 2.5 THz.  Using this value, the shortest spatial wavelength generated by 

the system in the normal configuration is λy = 2π/ky = 488 µm; over 30 times larger than 

the transverse placement accuracy. 

Object placement is more critical in the z-dimension where even slight variations 

can create significant phase shifts.  Coarse z-placement is accurate to about 100 µm and is 

done by adjusting the object position until it is well focused when viewed through the 

microscope.  Fine adjustment in z is done by measuring the temporal location of the 

amplitude peak in a spatial sample.  The object position is adjusted until the peak is in the 

same location as the peak of the reference.  Thus, using the ranging capabilities of the 

system, z-positioning can be accurate to approximately 15 µm, or 1/10th a wavelength for 

2.0 THz.   

It is noted that there is considerable tolerance in positioning the object despite the 

fact that the phase must be very accurate.  Positioning in x and y by use of the microscope 

is far better than it need be.  Placement within about ±50 µm would be sufficient since it 

is still only about 1/10th of the wavelength of the highest spatial frequencies involved.  

Positioning in z also has some tolerance but in another form.  As long as the object is 

placed within approximately 100 µm, the time-delay between the gating optical pulses of 

the transmitter and receiver can be manually adjusted to bring the peak of the pulse into 

overlap with the reference.  This seems somewhat invalid since it doesn’t actually put the 

object exactly on the previously defined origin.  However, these small adjustments to 

lock in the phase do not noticeably affect the image.  This is due to the shape of the focal 

region of the spherical mirror.  As will be discussed in chapter 6, this shape can be 
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described as an elongated tube and permits a significant tolerance in positioning the 

image plane.  In other words, small changes in the z-position of either the object or the 

image plane do not noticeably affect the spatial field distribution in the image plane, as 

long as the timing is established. 

 

5.5.6  Image Reconstruction 

As stated earlier, the phased-array elements effectively share a common center of 

curvature in the THz system.  Since the elements are spherical mirrors this allows them to 

behave together as a large, single, sparse-aperture spherical mirror.  Therefore they 

naturally act in unison as one object:  one large-aperture optic, forming a single image.  

The data collected by this system need not be deconvolved or further processed in any 

way to form the image.  There is no need for interferometric techniques like those used in 

radio astronomy.  The image is completely processed naturally by the setup of the 

system.  Aside from superposing the individual images, the phased-array system behaves 

just like the single mirror system. 

This is quite different from other AS systems.  In many AS systems, such as those 

used in radio astronomy, it is impractical or impossible to place individual array elements 

such that they construct a single coherent sparse-aperture optic.  Rather, individual 

movable elements are used to collect data, which is then reconstructed into an image by 

interferometric techniques [36].  Similarly, airborne SAR methods collect data from a 

single array element that is scanned through the sky on an airplane.  The data, known as 

the phase history [50], is recorded and images are later reconstructed with numerical or 
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optical techniques.   

Most optical systems, however, form images immediately by lenses.  The relative 

phase shifts applied to the spatial signals are induced by the shape and curvature of the 

lens itself.  The THz system is able to use such optical processing to naturally form an 

image, just like a lens.  At the same time, AS can be easily implemented in the THz 

system due to its relatively forgiving positioning requirements and its ability to measure 

amplitude and phase. 

In all these respects the THz imaging system is unique and demonstrates the 

simplest possible form of image reconstruction in an AS setup:  superposition.  This 

mixture of optical and microwave properties makes high resolution imaging at THz 

frequencies very simple yet effective.   

 

5.6  Single Point Source 

A 1 mm diameter, chrome-plated, steel ball was used as the object to demonstrate the 

conceptual validity of synthetic phased-array THz imaging.  Again, this ball behaves as a 

point source so it was possible to obtain an image smaller than the 1 mm ball.  Two 

images were recorded, each having a different orientation of the scan plane.  The first 

image was recorded with the scan plane in the normal orientation, or 0° tilt.  This scan 

plane was called the xy-plane.  The second image was recorded with the scan plane tilted 

–16° about the x-axis to mimic a synthetic mirror located below the spherical mirror.  

This scan plane was called the xy’-plane.  Spatial samples were taken in both the x and y 

dimensions so the resulting data set had the form E(x,y,t).  To differentiate the two data 



 80 

sets and the two different scan plane orientations the first image was termed E1(x,y,t) and 

the second, E2(x,y’,t).  In both images a total of 825 spatial samples were recorded; 33 

samples in y (or y’) by 25 samples in x.  Spatial sample spacing was 125 µm in both 

directions, so the images spanned a total of 3 mm in x and 4 mm in y.  Each spatial 

sample was a 17 ps, time-dependent waveform that consisted of 256 data points, each 

spaced by 66.7 fs.  The peak SNR of the images ranged from about 70 and 110 due to a 

recurring noise problem.  In section 5.5.4, Figure 5-9 showed two spatial samples 

obtained from this experiment.  These were the origin samples of the two individual 

images and their overlap ensured a proper phase reference.  After both individual images 

were collected they were superposed to generate the higher-resolution composite image. 

 

5.6.1  Three-Dimensional Data Display 

Having collected three-dimensional data, the problem of displaying it became 

evident.  Surface plots are sufficient for two-dimensional data wherein the third display 

dimension can be used to indicate field amplitude.  However, such plots are no longer 

usable for three-dimensional data because a fourth display dimension is necessary to 

indicate field amplitude.  There are several ways to overcome this problem.  One such 

method borrows from C-scan ultrasonic imaging wherein the peak amplitude value is 

picked from each spatial sample and this value is used as a gray level in the image [33].  

Another method is to simply plot the amplitude values in a single plane of interest within 

the image.  Such a plane would represent a slice through the volumetric data and could 

correspond to some specific temporal or spatial region of interest.   
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Another method is to integrate out the time dimension by plotting the energy 

density of the images, G(x,y), rather than their field amplitudes, where 
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and η0 is the impedance of free space equal to 376.73 ohms.  Here E1 and E2 represent the 

two sets of individual electric field image data and (E1+E2) represents their superposition.  

Therefore G(x,y) is the composite energy density image and contains both the individual 

energy density images G1(x,y) and G2(x,y) defined as 
 

( ) ∫≡ tEyxG d1, 2
1

0
1 η

           (5-2) 

( ) ∫≡ tEyxG d1, 2
2

0
2 η

           (5-3) 

and the interference term defined as 
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The net result is a two-dimensional image that would be obtained if THz photographic 

film or a THz CCD camera was placed in the image plane and used to record the image.  

This approach can be generalized to superpositions of greater numbers of individual 

images by the following formula 
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The individual energy density images are then designated by 
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Henceforth, the “density” term shall be suppressed in referring to such images.  For 

simplicity they shall simply be referred to as energy images. 

 

5.6.2  Phased-Array Images 

The images obtained by this experiment are shown in Figure 5-10 and will now be 

discussed.  Consider the plane (henceforth called the xY plane) bisecting the two scan 

planes, xy and xy’.  To a good transverse approximation y = Y and y’ = Y.  For plotting 

purposes only, therefore, we may treat all these variables as same single variable Y.  By 

doing so, the transverse spatial profile of the images can be presented in a comparable 

fashion.  Figure 5-10 uses this Y variable for the vertical axis of all the images.  Figures 

5-10a through 5-10c show the normalized energy plots for the individual images (at 0° 

and –16° orientations), and the composite image, respectively.  Figures 5-10d through 

5-10f show the corresponding amplitude images.  Figures 5-10d and 5-10e were 

generated by picking the peak field amplitude out of each time-dependent spatial sample.  

This amplitude was used to determine the contour level at that spatial location.   

The composite amplitude image, shown in Figure 5-10f, had to be generated in 

another fashion.  It is not meaningful to simply pick the peak amplitude value in the 

composite image because there are two peaks (one from each individual image) for every 

spatial point except those near the origin.  To clarify this Figure 5-11 shows the x = 0 

slice through the normalized composite image data.  The individual image pulses are 
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maximally separated in time at the far y-ends of the image.  These two pulses smoothly 

pass through each other as a function of y and overlap precisely at the (x = 0, y = 0) 

position.  Therefore, to display the image, it was necessary to pick the amplitude values 

in a particular plane of interest.  For Figure 5-10f, this plane was defined by the set of 

temporal points which lie halfway between the individual image peaks.  Figure 5-11 

shows this plane as the heavy line. 

There are two reasons why this plane was a suitable choice.  First, this plane 

defines the set of all points in which the coherent interference between the two images is 

maximized.  This is consistent with the goal of this experiment, which was to utilize the 

beneficial effect of interference.  It is pointless to look at some region in time where no 

significant interference is happening.  Second, this plane corresponds to the composite 

image plane of the phased-array system.  Consider Figure 5-12 where the side view of the 

phased-array system is shown again.  Each mirror can be assigned its own individual 

image plane in a geometric optics sense.  In this sense, the image plane is the plane 

perpendicular to the axis of the optical path and located at the geometric image point.  As 

shown in Figure 5-12, the image planes are shown as solid lines, ΓO and ΓS, for the 

original and synthetic mirrors, respectively.  Neither of these image planes, however, 

would be suitable to call the image plane of the composite phased-array system.  Instead, 

this composite image plane should be the plane perpendicular to the composite system 

optical axis, shown as the dash-dot line in Figure 5-12.   
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Figure 5-10. Normalized transverse array images of THz point source. (a) 0° energy 
image (b) -16° energy image, (c) phased-array energy image, (d) 0° 
amplitude image, (e) -16° amplitude image, (f) phased-array amplitude 
image.  Contours separated by 0.1.  Negative contours are denoted by dashed 
curves.  Contour for 0.5 shown as heavy curve. 
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Figure 5-11. Slice x = 0 through normalized composite image data.  Contours separated 
by 0.125.  Negative contours denoted by dashed curves.  Contour at 0.125 
shown as heavy curve to outline pulse peaks. 
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Figure 5-12. Side view of phased-array system showing individual and composite image 
planes. 
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This new image plane ΓC corresponds to the xY plane previously mentioned and is shown 

as the dashed line in Figure 5-12.  Since the receiver was not moved during image 

collection only the ΓO plane corresponds to the actual reception plane of the system, as 

described in section 5.5.  The composite image plane, ΓC, is merely a conceptual tool for 

extracting the data in a desirable fashion. 

To link the physical position of the composite image plane with timing, we note 

that the temporal separation between the pulses in the composite image is a function of y, 

and the rate of change of that separation is dependent on the angle between the individual 

image planes.  The composite image plane bisects this angle and, therefore, the time slice 

corresponding to the image plane of the composite system, ΓC, is halfway between the 

pulse peaks of the individual images. 

The effects of the phased-array system are obvious in Figures 5-10c and 5-10f.  In 

the vertical y dimension, the width of the image is significantly reduced and two side 

lobes appear, whereas no significant change is apparent in the horizontal x dimension.  

This is because the synthetic mirror increased the effective aperture in the vertical 

direction only.  The vertical side lobes appear as a consequence of the sparse composite 

aperture.  The decrease in vertical width of the image (or equivalently the increase in 

resolution) is approximately four times. 
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5.6.3  Artificial Aperture Doubling 

The four times increase in resolution was unexpected and is a consequence of the 

fact that the object is not self-luminous but moves through a fixed illumination beam.  In 

the xy-plane, the arrival time of the illumination pulse to the object is approximately 

independent of the object’s y-position.  However, in the xy’-plane, the illumination 

encounters more or less path length as the object scans in the +y’ and –y’ directions, 

respectively.  Figure 5-13 illustrates this effect.  The effect of the altered path length can 

be approximately modeled by assuming the object is self-luminous and the scan plane 

was tilted 30°, approximately double the intended 16°.  In this case, the effect is 

constrained to the y-dimension, so we note that it is independent of the time-delays in the 

image caused by the angled illumination axis.  If arraying was also done in the 

x-dimension, the artificial aperture doubling would still occur but would be superimposed 

on the time-delays caused by the angled illumination axis. 
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Figure 5-13.  Artificial aperture doubling model.  Scan planes are shown as dotted lines. 
 

The artificial aperture resizing is more precisely described as follows.  We know 
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z1 = δy·tan(θ1), as shown in Figure 5-13 and since the THz must travel to and from the 

object, we can say the overall path change is 2z1 = 2δy·tan(θ1).  However, we can also 

express this path change in terms of a self-luminous object in another scan plane tilted 

more than the first.  In this case the same path change is expressed as δy·tan(θ1+θ2).  

Equating the two path change expressions and solving for θ2 yields θ2 = 13.8°.  Hence the 

fixed illumination source made the synthetic and spherical mirrors appear to have an 

angular separation of 29.8°, approximately double what was intended.  It is notable that 

this more precise treatment is still not exact because in the tilted configuration the object 

moves a distance of δy in the tilted direction, not the normal y direction.  Suffice to say, 

the overall consequence is that the effective aperture was not only approximately 

doubled, as intended, but increased by almost four times in size, thus increasing 

resolution by about four times, to our advantage.  This is a fully justifiable phenomenon 

as resolution is directly related to observed phase differences [44], something which path 

length changes cause, by nature.  Finally we note that this effect would obviously not 

occur for a self-luminous object and that the approximate doubling is only evident at 

small scan plane tilts (< 20°).  As tilt angles increase, the effect diminishes. 

Another verification of the understanding of this doubling effect is evident in the 

side lobe amplitudes of the composite images.  In the THz system, the artificial doubling 

of the angular mirror separation created an effectively larger but sparser overall aperture, 

which resulted in greater side lobe levels.  A common example of this behavior is the 

common two-slit optical interference pattern wherein side lobes are as large as the central 

lobe.   This is very similar to the situation illustrated in Figure 2-5, where the resolution is 

high due to the large angular span of the aperture but side lobes are enhanced due to the 
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lower relative spatial frequency bandwidth.  This phenomenon increased the side lobe 

amplitudes to the levels seen in Figure 5-10.  The theoretical analysis in section 6.5.1 will 

show a close agreement with these side lobe levels, indicating the understanding of this 

doubling effect is valid. 

Having discussed the aperture doubling effect it becomes necessary to show how 

it affects the location of the composite image plane.  The aperture doubling does not 

change the manner in which the composite image plane is defined, but it does change its 

orientation.  Figure 5-14 shows how, in the aperture doubled system, the composite 

image plane still bisects the image planes of the individual elements, but is now tilted at 

approximately twice the angle shown in Figure 5-12.  Even though the scan planes were 

only separated by 16°, the image planes were separated by approximately double that, 

due to artificial aperture doubling.  Therefore, to bisect the individual image planes, the 

tilt of the composite image plane must also double.  Nevertheless, the composite image 

plane still corresponds to the time slice halfway between the pulses from the individual 

elements.  So the method whereby the image in the composite image plane is obtained is 

unchanged. 
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Figure 5-14.  Side view of aperture doubled system showing composite image plane. 
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5.7  Two Point Sources 

To further demonstrate the enhanced resolving power of the system, two 391 µm 

diameter, chrome-plated, steel balls were mounted together to form a double point source 

object.  The successful imaging of this object verified the resolvability of individual 

features on a more complex structure and determined some higher order effects that 

interfere with phased-array imaging and resolution in general.  The two balls were 

mounted, as shown in Figure 5-15, on a paraffin wax holder such that they were in 

contact with each other in y but separated by about 50 µm in z, where the upper ball was 

more distant from the spherical mirror. 
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Figure 5-15. Two point source object comprised of two 391 µm diameter steel balls 
mounted in a paraffin wax holder.  Some wax was also present between 
them at their front face. 

 

Due to the proximity of the balls, it was thought that side lobe levels might 

interfere with resolution.  To reduce these side lobes by filling in the sparse aperture, 

three images (instead of two) were recorded, each having a different orientation of the 
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scan plane.  The first image was recorded with the scan plane in the normal orientation, 

or 0° tilt.  The second and third images were recorded with the scan plane tilted –10° and 

+10° about the x-axis to mimic a synthetic mirror located below and above the spherical 

mirror, respectively.  Spatial samples were taken in both the x and y dimensions so the 

resulting data set had the form E(x,y,t).  In all three images a total of 651 spatial samples 

were recorded; 31 samples in y by 21 samples in x.  Spatial sample spacing was 100 µm 

in both directions so the image spanned a total of 2 mm in x and 3 mm in y.  Each spatial 

sample was a 17 ps, time-dependent waveform that consisted of 256 data points.  The 

SNR of the data ranged from 13 to 120 due to sporadic noise problems and the changing 

orientations.  All three individual images were superposed to generate the high-resolution 

composite image. 

 

5.7.1  Image Analysis and Enhancement 

For the plots of these images, the y-axis was simply labeled “y” and represents the 

y-value on the composite image plane, just like the “Y” label for the previous images in 

Figure 5-10.  In fact, the synthetic phased-array for this and future experiments contained 

elements symmetric about the normal configuration.  Therefore the composite image 

plane was coincident with the y and/or x direction.  Due to their symmetry, all subsequent 

composite images will also follow this notation. 

Figure 5-16 shows an x = 0 volumetric slice through the composite data.  The two 

balls are quite clearly resolved by their specular reflections.  Also evident is a double 

reflection feature occurring later in time.  This feature is the multipath effect, mentioned 
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in section 4.1.2, wherein the THz is first reflected from one ball, to the next, and then to 

the receiver.  Figure 5-17 illustrates this phenomenon.  The overall received waveform is 

therefore approximated as a superposition of four reflection features: two specular 

reflections and two double reflections.  Two specular reflections and one double 

reflection are illustrated in Figure 5-17 and the other double reflection just follows the 

reverse path of the first.  The changes in path length, caused by scan plane re-orientation, 

are equivalent for both double reflections, so they always overlap and, together, can be 

considered one reflection feature. 

The double reflection feature becomes important when viewing the transverse 

images, because it interferes with the resolvability of the balls.  Consider the energy 

image of the two balls shown in Figure 5-18a.  This image was created by integrating 

over the entire temporal span of the image.  Though it is weaker, the double reflection is 

spatially located right between the two specular reflections and acts as clutter in the 

image.  Therefore, in the energy image, the specular features are blended together by the 

double reflection and the resolution of the balls is destroyed.  The resulting general 

implication is that a system may be well-corrected and have a sufficiently low diffraction 

limit to resolve the object features, but resolution may still not be possible due to higher-

order effects.  This would be a significant problem in an incoherent system, where 

filtering in the time-domain would not be possible.  However, the THz system is coherent 

and the double reflection feature, which occurs later in time than the specular features, 

can be windowed out of the data.   
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Figure 5-16. Slice at x = 0 through two-ball composite image.  Contours are separated by 
7 pA.  Negative contours are indicated by dashed curves. 
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Figure 5-17.  Reflection features from two 391 µm balls. 
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Figure 5-18. Transverse energy image for two 391 µm balls.  (a) image containing 

double reflection feature.  (b) image with double reflection feature time-
excluded prior to integration. 

 
 

By excluding the data containing the double reflection (t > 9.6 ps) from the 

integration, the detrimental effect is removed.  Figure 5-18b shows the same energy 

image as Fig. 5-18a after time-excluding the double reflection feature.  The resolvability 

of the balls reappears in the transverse image. 

Figure 5-19 shows another transverse image obtained by plotting the surface of a 

volume wherein the raw amplitude data have a value greater than a fixed threshold.  In 

this case the threshold value is 40 pA, approximately 80% of the peak value.  The data is 

processed in a binary fashion where only values of sufficient amplitude are retained and 

all other values are discarded.  The transverse image of the two balls is then plotted as the 

surface of the volume containing the retained values.  This method removes the double 

reflection features while retaining the stronger, specular features. 
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Figure 5-19. Transverse isoamplitude plot of two 391 µm balls.  Surfaces contain data 
values which have amplitude of greater than 40 pA. (or 80% peak 
amplitude). 

 

The images of Figures 5-18 and 5-19 clearly show the resolution gain in the y 

direction allowing discrimination of the two 391 µm balls, despite the fact that they are 

somewhat temporally blended together.  Artificial aperture doubling and the 

accompanying resolution gain in the y direction is present as expected, and no resolution 

gain is present in the x direction. 

The images also demonstrate a few of the image processing and enhancement 

techniques available to this system by digitally storing the coherent, phase-referenced 

individual images.  Such techniques permit imaging of smaller or less reflective objects, 

imaging of objects in clutter, and filtering of undesired features.  Unwanted image 
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anomalies are often distinguished by later arrival, weaker amplitude response and/or 

altered spectral response.  Hence, temporal feature exclusion, amplitude thresholding, and 

frequency filtering, in both the temporal and spatial domains, are all valid signal 

processing techniques. 

 

5.7.2  Ambiguous Phase Reference 

During the phased-array imaging of the single point source, the images were 

phase locked to each other by ensuring that the waveforms of the spatial samples at the 

origin overlapped exactly.  This task required that these reference waveforms be very 

similar in shape and size for both images.  This was not a problem for the single point 

source since the only feature present in the waveforms was the single specular reflection 

from the ball, unchanged by re-orientations.  However, this was a significant problem for 

imaging the two 391 µm balls.  Based on previous calculations, the THz system has range 

resolution of 81 µm.  But the z-separation between the two balls during this experiment 

was only about 50 µm.  Consequently the specular reflections from the two balls blended 

together in time, making it impossible to use either of them as a reference.  Figure 5-20 

shows the reference waveform for the 0° orientation as the solid curve.  The specular 

reflections from the two balls (at about 8.5 ps) have blended together into one peak.  The 

phase reference problem is further aggravated by the other imaging orientations.  When 

the scan plane was tilted about the x-axis the time-delay between the specular reflections 

changed; this reshaped the waveforms and made them impossible to properly overlap.  

Figure 5-20 shows the reference waveforms for the +10° and –10° orientations as dashed 
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and dash-dot curves respectively.  To clarify the figure, the +10° and –10° waveforms are 

shifted by +20 pA and –20 pA, respectively. 
 

 
 

Figure 5-20. Phase reference waveforms for three images of the 391 µm balls.  Solid 
curve for 0°, dashed curve (shifted 20 pA) for 10°, dash-dot curve (shifted 
-20 pA) for -10° orientations. 

 

The specular reflections became resolved when the object was tilted in the –10° 

orientation because the tilt caused the spatial ball separation in the z direction to increase 

beyond the range resolution limit.  The specular features interfered more constructively in 

the +10° waveform than in the 0° waveform, thus making the +10° waveform attain 

greater amplitude.  The local maximum at about 10.2 ps corresponds to the double 

reflection. 

Though it was not possible, ideally the phase relationship would have been 

established by overlapping the waveform portions corresponding to the specular 
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reflection from only one of the balls.  This would ensure that the location of this 

reference ball would have been common for all orientations and would establish an 

absolute phase reference.  For lack of a better alternative, the reference waveforms were 

positioned such that their features were simply near each other.  This locked the images 

together in some phase relationship albeit an incorrect one. 

 

5.7.3  Image Reconstruction 

Since the proper phase reference was not established during imaging, some image 

reconstruction was necessary.  In that sense this experiment demonstrated the problems 

associated with most AS system wherein such reconstruction is constantly necessary.  

The difficulty of this reconstruction process was in the fact that the amount of phase error 

between the images was heretofore unknown and therefore un-correctable. 

One important property of the individual images, however, was that all their 

spatial samples had the same phase error as each other.  Since the phase error is manifest 

as timing shifts, all the spatial samples of any single image had the same undesired 

temporal shift.  Therefore, to get the correction to the phase error of an entire image, it 

was only necessary to find the errant temporal shift in one spatial sample.  By applying 

the necessary time-shift correction equally to every sample, it was possible to correct an 

entire image. 

To begin finding the error it was necessary to temporally isolate the single 

specular reflection from the reference ball in each reference waveform.  Upon isolation, 

the temporal location of this specular reflection could be measured for each orientation.  
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Assuming the reference ball should have a common location at the origin for all three 

images, the differences between these temporal location measurements would establish 

the phase error. 

To begin the analysis, it was assumed that the overall waveforms consisted of a 

specular reflection from each ball and the double reflection feature.  As the tilt of the scan 

plane changed, the temporal separation between these individual features also changed, 

and caused their superposition waveform to change shape, as shown in Figure 5-20.  To 

better understand this reshaping, four more reference waveforms, similar to those in 

Figure 5-20, were collected, each at different scan plane orientations.  The additional 

orientations were +5°, +15°, –5° and –15°.  Figure 5-21 shows all the reference 

waveforms together.  It is noted that, in this plot, the vertical axis is used to designate the 

scan plane orientation, not the amplitude of the waveforms.  Also, all the waveforms are 

scaled equally in amplitude.  The figure clearly shows two pulses merging together into 

one and passing through each other as a function of scan plane orientation.  These are the 

specular reflections from the balls.  The double reflection feature stays almost fixed in 

this figure. 
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Figure 5-21. Reference waveforms for seven scan plane orientations and calculated 
timing changes of reflection features (dashed lines). 

 
 

Using geometry, the expected timing changes for the individual reflection features 

can be calculated as a function of scan plane orientation.  The result of this calculation is 

shown as the three heavier, dashed lines passing through the waveforms in Figure 5-21.  

The lines show excellent agreement with the behavior of the individual reflection features 

in the waveforms indicating the behavior of these features was understood.  It is noted 

that the reference waveforms were shifted in time to line up properly with the calculation 

results but this doesn’t affect the relative timing relationships between the individual 

reflection features themselves. 
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The calculated information showed where the waveforms were supposed to be to 

establish a phase reference.  For example, if the desired phase reference was the double 

reflection pulse then we would expect this feature to remain fixed in time regardless of 

orientation, almost exactly how it appears in Figure 5-21.  The actual data waveforms 

would then have to be shifted in time such that they appear as they do in Figure 5-21.  

Shifting the entire image equivalently would then lock the images in proper phase. 

To establish proper timing relationships more accurately, model pulses were 

constructed to mimic the data.  These models were the superposition of three component 

waveforms, each corresponding to a reflection feature from the object.  The individual 

components could be shifted in time relative to each other to examine how their 

superposition would change shape.  The shape of the waveform from a single specular 

reflection was already known from previous experiments, and an idealized version of it 

was used to create the model components corresponding to the specular reflections.  A 

slightly modified version was used to model the double reflection.  By properly adjusting 

the temporal location of these components it was possible to sum them together and 

create waveforms which were very similar in appearance to the actual data.  Modeling the 

data as such revealed where the individual components of the actual data were temporally 

located.  Comparing this to their desired location (previously calculated) it was possible 

to extract the timing (phase) error. 

Figure 5-22 shows one model waveform overlapping actual data.  In this figure, 

the model waveform components are shown together with their superposition and the 

actual reference waveform for the 0° orientation.   
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Figure 5-22. Overlap between actual 0° reference waveform, shown as filled circles, and 
matching model waveform with its components. The specular reflection 
models are shown as the dashed and dot-dashed curves.  The double pulse 
model is shown as the dotted curve and the superposition of all three model 
waveforms is the solid curve. 

 

The actual data, shown by the filled circles, overlaps well with the superposition 

model, indicating that the model components reasonably mimic the reflection features 

from the actual data.  By assuming the components in the actual data were in the same 

location as the components in the model data, the timing of each individual reflection 

feature in the actual data was isolated.  By applying different relative time-shifts to the 

same three model components it was possible to model the actual reference waveforms of 

the other six orientations with similar fits.  Figure 5-23 illustrates three of these fits.  It is 

stressed that the model waveform components were not changed in shape but only shifted 

in time to achieve these matches.  In this way the temporal location of the components of 
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the actual data waveforms was established, as well as the phase error. 

 

 
 

Figure 5-23.  Overlap between model waveforms and actual data. 
 

By assuming the phase was already correct in the 10° data it was only necessary 

to correct the error in two images.  It was found that the 0° data had to be shifted 392 fs 

later and the –10° data had to be shifted 492 fs later.  The images shown in Figures 5-16, 
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5-18 and 5-19 all incorporated this phase correction, which was necessary for the 

discrimination of the balls. 

 

5.7.4  Array Steering 

In section 5.7.1, a couple of forms of image processing were used to recover the 

resolution in the image of two 391 µm balls.  Due to its coherent nature, there are many 

types of unique image processing or enhancement techniques available to the THz 

system.  Array steering is one such technique and illustrates one of the major benefits of 

phased-array radar systems:  the ability to steer the beam electronically rather than 

mechanically.  One method by which this is done is by applying phase shifts to individual 

array components, similar to the shifts used to correct the phase reference for the THz 

images of the two 391 µm balls.  The following experiment showed that array steering 

can also be applied to the phased-array THz imaging system. 

The phase error correction which was successful in recovering the image of the 

two 391 µm balls was accomplished by using the specular reflection off the lower ball as 

a phase reference.  It was only assumed throughout the analysis that the origin samples 

(at x = 0, y = 0) were used to establish that phase reference.   If this were the case, the 

reference (lower) ball would have been located at y = 0 in the images of Figure 5-16, 5-18 

and 5-19.  Instead, the images showed the reference ball was centered at approximately 

y = 200 µm.  This demonstrates the fact that, in actuality, the y = 200 µm waveforms were 

used as phase references.  By using these waveforms, it was assumed that the lower ball 

was centered at y = 200 µm.  Then, using these waveforms to repair the phase error 
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consequently phase locked (steered) the array to this point. 

In a similar fashion, it was possible to use either the specular reflection off the 

other ball or the double reflection to reference the images.  This was done by once again 

adjusting the phase of the images such that the desired reference features from each 

orientation perfectly overlapped in the reference waveforms.  Figure 5-24, an x = 0 slice, 

shows the result of using the second specular reflection (the upper ball) as a phase 

reference.  The entire image has shifted down in the y direction by approximately 

382 µm, indicating that the array was now steered to a spot about 382 µm above the 

original.  This corresponds almost exactly with the relative position of the upper ball with 

respect to the lower ball.  Again the y = 200 µm waveforms were used to establish the 

phase lock; therefore the upper ball became centered at this point. 
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Figure 5-24. Slice at x = 0 through image of two 391 µm balls with array steered to 
upper ball phase reference.  Contours are separated by 7 pA.  Negative 
contours are indicated by dashed curves. 

 

It was also shown that the array could be steered to some arbitrary point in space 

which did not correspond to any physical object at all.  Since the composition and 

behavior of the reference waveforms were understood from previous work, it was 

possible to extrapolate their relative timing changes to determine what they would look 

like locked to some arbitrary reference.  By shifting the actual data to match these 

calculations, the phase reference was locked to an arbitrary location somewhere above 

the upper ball.  Figure 5-25 shows the result of this experiment. 
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Figure 5-25. Slice at x = 0 through image of two 391 µm balls with array steered to 
arbitrary phase reference above upper ball.  Contours are separated by 
7 pA.  Negative contours are indicated by dashed curves. 

 

Clearly the image had shifted again in the y direction, this time by about 530 µm 

down from the original.  This shows the possibility of array steering and demonstrates the 

ability of the system to extrapolate image information where it was never actually 

recorded.  The validity of this data certainly doesn’t extend out indefinitely, but for small 

regions around the normal arrangement it is clearly usable.  

Much of the image processing shown here was possible only because of a priori 

knowledge of the object.  Array steering, for example, was first accomplished by locking 

array elements to known features on the object.  Such information is not generally 
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known, but similar methods can still be used.  Once the elements of the array are in some 

known phase relationship, they can be steered to look in a desired direction regardless of 

object characteristics.  This was demonstrated by steering the array to a point in space not 

occupied by the object at all. 

Finally, it is noted that all phase correcting, filtering, and steering was done after 

the data was fully collected.  All the capability to form the high-resolution image was 

stored in the individual images.  To actually form that image, it was only a matter of 

finding their correct timing relationship.  This demonstrates both the power and 

flexibility of the coherent THz imaging system and coherent, quasi-optical imaging 

systems in general.  

 

5.8  Two-Dimensional Phased-Array Imaging 

Having shown the system’s phased-array capabilities in the vertical direction it was 

necessary to ensure similar behavior in the horizontal direction.  To accomplish this a 

new object was constructed out of a single 391 ± 3 µm diameter, chrome-plated, steel ball 

and two small cylindrical strips of solder, each having a diameter of about 420 ± 10 µm, 

and fashioned together into the shape of a T.  The T portion lied in the plane 

perpendicular to the system optical axis.  Figure 5-26 shows a scale diagram of the T-ball 

object. 
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Figure 5-26. Scale diagram of T-ball object.  The dash-dot lines indicate the center of the 
data set. 

 

To avoid the phase reference problems present in the previous experiment the ball 

was mounted such that it was closer to the spherical mirror along the z direction by about 

260 µm.  As a result, the reflection from the ball arrived at the receiver about 1.7 ps 

earlier than the reflection from the T so the ball could act as the lone phase reference 

regardless of scan plane orientation.   

To increase resolution in both the x and y directions, and to reduce side lobes, five 

images were recorded, each having a different orientation of the scan plane.  The first 

image was recorded with the scan plane in the normal orientation, or 0° tilt.  The second 

and third images were recorded with the scan plane tilted +10° and –10° about the y-axis 

to mimic synthetic mirrors located to the left (–x direction) and right (+x direction) of the 

spherical mirror, respectively.  The fourth and fifth images were recorded with the scan 

plane tilted +10° and –10° about the x-axis to mimic a synthetic mirror located above and 
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below the spherical mirror, respectively.  Spatial samples were taken in both the x and y 

dimensions so the resulting data set had the form E(x,y,t).  In all five images a total of 

837 spatial samples were recorded; 31 samples in y by 27 samples in x.  Spatial sample 

spacing was 100 µm in both directions thus the image spanned a total of 2.6 mm in x and 

3.0 mm in y.  Each spatial sample was a 17 ps, time-dependent waveform that consisted 

of 256 data points, each spaced by 66.7 fs.  Peak SNR’s ranged from about 25 to 100. 

The images were collected with the proper phase relationship by using the 

specular reflection from the ball as the reference.  Therefore, the images were simply 

superposed to form the composite image.  Due to the relative complexity of the object it 

was more difficult to find a method whereby it could be displayed.  Individual slices 

through the volumetric data proved unusable for visualization.  Therefore, it was 

determined that energy images, obtained by integrating sections of temporal data, would 

work best. 

For this method to work it was necessary to somewhat process the data.  Instead 

of integrating over the entire temporal span, the data was split into two sections.  The first 

section consisted of the temporal region extending from t = 0 to 5.6 ps.  This region 

incorporated only the occurrence of the specular reflection from the ball.  The second 

section consisted of the temporal region extending from t = 5.6 to 17 ps; incorporating 

only reflections from the T.  Each section was squared and integrated over time to form 

two partial-energy images.  These images were then separately normalized to yield the 

images shown in Figure 5-27a and 5-27b. 
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Figure 5-27. Partial energy images of the T-ball object, both separately normalized. 
Contour separation is 0.1.  Heavy contour shown in (a) is used to illustrate 
FWHM of the dual-axis arrayed image of a point source. 

 

The ball is clearly resolved in Figure 5-27a and shows that the phased-array 

imaging was successful in both the x and y directions.  The FWHM measurement of the 

ball, in this energy picture, is 435 µm in both the x and y directions.  The T, shown in 

Figure 5-27b also exhibits features which are evident only because of the increased 

resolution in both directions.  The physical pieces of solder comprising the T were not 

very uniform and could explain why the T appears thicker than the ball.  Nevertheless, 

when both of these images are overlapped, the transverse resolution between them 

becomes apparent.  This overlapped image is shown in Figure 5-28 and the method by 

which it was obtained will be further discussed shortly.  Note, however, that the T and the 

ball are both located where they are supposed to be and are resolved in both the x and y 

directions. 
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Figure 5-28. Overlap of normalized T and ball partial-energy images.  Contours for 0.1, 
0.2 were removed from both pictures.  Contour for 0.3 also removed from 
ball picture. 

 

Further explanation is required to help understand the image in Figure 5-28.  No 

contours are labeled on it because the normalization factor for the ball and the T were 

quite different.  The T, having cylindrical surfaces, reflected far more THz than the ball 

and its energy image was stronger than the ball’s.  In order to make the ball visible 

against the T, each was normalized separately.  If this was not done, the small amount of 

energy in the ball reflection would be masked by the large energy of the T reflection.  

Figure 5-28, therefore, shows the energy images from 5-27a and 5-27b, separately 

normalized and overlapped, but not added together.  Figure 5-29 shows the energy image 

resulting from actually adding the T energy image to the ball energy image, without first 
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normalizing them separately.  Since the peak energy in the T is about 8 times higher than 

the peak energy in the ball, the resulting image looks almost exactly like Figure 5-27b 

and the structure of the ball is almost completely invisible. 
 

 
 

Figure 5-29. Energy image of T-ball with no separate normalization for T and ball 
portions.  Contour separation is 1.8×104 and the peak value is 1.68×105 
expressed in arbitrary energy units. 

 

5.8.1  Object Stealth 

One thing to notice on Figure 5-27b or 5-28 is the lack of image fidelity exhibited 

in the top (horizontal) portion of the T.  This region of the image is far weaker than the 

vertical region just below it.  This effect is yet another owing to the fact that the object is 

not self-luminous.  As illustrated in Figure 5-30, both portions of the T lie in a plane 

perpendicular to the system optical axis so that, in the normal scan plane configuration 

(0° tilt), the top portion of the T reflects the THz as a horizontal cylindrical wave 
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spreading in a direction which is not coincident with the spherical mirror.  However, the 

bottom portion reflects a vertical cylindrical wave which compensates for the off-axis 

illumination, and thereby intersects the mirror.  This stealth behavior is present in any 

object with flat features.   

 
 

Illuminating THz 

Reflected THz System 
Optical Axis 

Illuminating THz 

Reflected THz 
System 

Optical Axis 

Horizontal Cylinder Vertical Cylinder 

z 

x 

y 
 

 
Figure 5-30.  Object stealth behavior for horizontal and vertical cylinders. 

 

The situation is also altered by the different orientations of the scan plane.  For 

example, when the scan plane is rotated +10° about the y-axis, the normal to the 

horizontal T portion almost bisects the 17° angle between the illumination and the system 

optical axis.  This allows the top part of the T to reflect some radiation back to the 

spherical mirror.  On the other hand, the –10° orientation only aggravates the stealth 

condition because the THz is reflected even farther from the spherical mirror.  Varying 

orientations about the y-axis does not affect the vertical T portion because of its 

cylindrical shape. 

In a similar fashion the orientations rotated about the x-axis do not affect the 
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response of the horizontal T portion, but they do affect the vertical portion.  Therefore, 

the vertical T portion has three of five orientations wherein its response is very 

significant.  Fortunately, these three orientations are also those needed to produce the 

increased resolution in the x direction.  The horizontal T portion, however, has only one 

of five orientations wherein its response is significant.  Hence, it does not register well on 

the overall image.  It is noted, however, that the surfaces of the T are not perfectly 

smooth; therefore the diffuse reflections from its surface allow the T to be more visible 

than geometric considerations alone would predict.  As expected, no stealth properties are 

apparent on the ball since it scatters radiation toward the spherical mirror regardless of its 

orientation.   
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Chapter 6     

Theoretical Analysis 

 

 

In an effort to gradually improve the description of the THz imaging system, three 

different models were used, each incorporating more of the physical characteristics of the 

system.  Regardless of the specific approach, all the models used a combination of ray-

tracing and diffraction theory, to some extent.  Ray-tracing, or geometric optics, was used 

to determine the field distribution in or near a certain plane containing the exit pupil.  

From this point the remainder of the modeling was done with diffraction theory.  This 

combined method is well-known [26] and has two important benefits:  relative simplicity 

and maintenance of the ability to accurately describe the complex focal region. 

 

6.1  Formulation of Models 

To begin the analysis, the THz imaging system must be thought to consist of two separate 

imaging sub-systems.  In the first sub-system, the spherical mirror forms an intermediate 

image of the object in a plane located about 17 mm in front of the receiver.  In the second 

sub-system, this intermediate image is, once again, imaged onto the receiver dipole 

antenna by the silicon lens.  As previously discussed, the spherical mirror forms the exit 

pupil (and is the most limiting aperture) in the system, so the silicon lens system can be 
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sufficiently modeled with ray tracing techniques alone, whereas the model of the 

spherical mirror system must include the effects of diffraction.  For this reason, it was 

initially assumed that the silicon lens system was well-corrected and introduced no new 

diffraction effects.  It was also assumed that the dipole antenna was an ideal sampler of 

the image projected onto it.  Under these assumptions the receiver as a whole, could 

simply be considered an ideal sampler of the image formed by the spherical mirror.  

Therefore, the modeling of the entire THz system needed only include the imaging of the 

object by the spherical mirror.  This approach had the added utility of yielding results in 

the same form as the data.  As will be shown, these assumptions proved to be valid in 

accurately describing the behavior of the THz imaging system. 

 

6.1.1  Input Pulse 

For all the models, the same idealized version of a THz pulse was consistently 

used to define the input to the calculations.  Objects were considered self-luminous with 

radiation in the form of this ideal THz pulse.  The pulse and its spectrum are shown in 

Figure 6-1.  It was modeled after actual THz pulses measured in the lab with the 

exception that it was given a frequency independent phase shift of approximately –π/2 

with respect to the pulses from the recorded data.  This was intentionally introduced to 

offset the π/2 phase shift introduced by a –j coefficient in the diffraction calculations in 

all three models, and thereby give the calculated results the same form as the data.  As 

explained in section 3.7 of reference [23], this shift can be understood by noting that the 

field in the image plane is proportional to the time-derivative of the field in the 
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diffraction plane.  This derivative is partially manifest as the 1/j term, which corresponds 

to a positive π/2 phase shift because of the chosen phasor notation.  This will be 

discussed in much greater detail in section 6.1.3. 

 
 

 
 

Figure 6-1. Ideal input pulse for theoretical calculations.  Inset shows normalized 
amplitude spectrum with horizontal axis in units of THz.  

 

6.1.2  Initial Approximations 

All three models share some inherent approximations common to imaging 

systems analyses.  The medium of wave travel is assumed to be isotropic, homogeneous, 

linear, non-dispersive, non-magnetic and source-free.  None of the optics in the system 

rotates the field polarization and aperture edge effects are ignored.  At the same time, the 

diffraction solutions are all valid solutions of the scalar wave equation and apply equally 
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to all components of the electric and magnetic fields.  Therefore, fields can be expressed 

as scalars rather than vectors. 

 

6.1.3  Phasor Notation 

One of the more formidable obstacles in THz research seems to be the fact that it 

is often best described by a blend of several other fields of study.  In some cases it 

follows strict electromagnetics principles, in other cases it is modeled very well by 

general optics principles.  Sometimes, however, a mix of several principles is necessary.  

The problem arises in the fact that different fields of study use different mathematical 

notation.  Such a problem is present in the study of diffraction phenomena and is manifest 

as a discrepancy in expressing the fields in terms of phasors. 

Specifically, optics references [23-26], use a notation wherein the phasors rotate 

in a clockwise direction as time moves forward.  Equivalently, their time-dependence is 

of the form exp(–jωt).  This means that if we move in space so as to intercept portions of 

a wavefield that were emitted later in time, the phasor will have advanced in the 

clockwise direction, and the phase of the wave should become more negative, and vice-

versa [23].  Using this phasor notation, we can generally express the instantaneous scalar 

field, F(t), of a monochromatic wave as 
 

( ) ( )[ ]tjFtF ω−ℜ= exp~ ,              (6-1) 

where ℜ[] denotes the “real part of” and “~” is used to denote the phasor notation of F.  

In a related fashion, the inverse Fourier transform can be used to express the 
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instantaneous scalar field for a polychromatic wave as a function of its spectrum, F(ω).  

More specifically, 

( ) ( ) ( ) ωωω
π ∫

∞

∞−

−= dexp
2
1 tjFtF .          (6-2) 

Note that this form of the inverse Fourier transform has a negative argument in 

the exponential.  Herein lays the potential confusion.  This is not the standard form of the 

inverse Fourier transform used in most electrical engineering disciplines, even though it 

is completely valid and appropriate for the chosen phasor notation.  More precisely, the 

basis functions for the inverse Fourier transform must share the exp(–jωt) time-

dependence assumed by the phasor notation. 

For the sake of following the more useful optics references, this phasor notation 

will be used to describe the THz imaging system and will necessitate the version of the 

inverse Fourier transform in equation 6-2.  Its transform pair then takes the form 

 

( ) ( ) ( )∫
∞

∞−

= ttjtFF dexp ωω .     (6-3) 

It is further noted that, in this notation, a converging spherical wave takes the 

form exp(–jkr)/r, whereas a diverging spherical wave takes the form exp(jkr)/r.  This 

unity-amplitude, diverging wave is called the free-space Green’s function [23] and is at 

the very heart of diffraction theory.  This is the common optics notation for the free-space 

Green’s function and it is the basic reason the optics form of the Fourier transform must 

be used.  Other fields, such as ultrasonic imaging [33], radar imaging [44] and general 

Fourier array imaging [49] use a counterclockwise phasor notation wherein the Green’s 
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function is expressed as exp(–jkr)/r, which permits the use of the electrical engineering 

form of the Fourier transform. 

Again, since the THz imaging system is quasi-optical and most of the theoretical 

analysis comes from optics references, the optics notation shall be used throughout.  For 

the monochromatic portions of the theory this notation is somewhat irrelevant, but it must 

be taken into account for the broadband portions. 

 

6.1.4  Comparison to Optical & Radio Systems 

Since the theoretical analysis of the system is founded in optics principles it is 

helpful to compare the THz imaging system to typical optical systems.  This provides a 

reference by which the theory can be judged appropriate for the task.  It also allows better 

understanding of the approximations that go into the theory and their effects.  

Additionally, a comparison to radio frequency systems is presented to help tie some 

concepts together and show that all apertured systems, regardless of frequency, operate 

by the same principles. 

Consider the imaging of a point source using the THz imaging system.  Since the 

system is configured for one-to-one imaging, the image produced by the system is really 

nothing more than a diffraction-limited focus of the spherical mirror.  Therefore, the THz 

imaging system can be considered a focusing system in this configuration.  Consider also 

the size of the optical components with respect to the wavelengths employed.  At 1 THz, 

the diameter of the spherical mirror is about 500 wavelengths and distance from the 

object to the mirror (and from the mirror to the focus) is about 2000 wavelengths.  For an 



 123 

optical system, having the same proportions and operating with green light (λ ≈ 530 nm), 

the mirror would be only 270 µm in diameter and the object would be only about 1 mm 

from the mirror.  Such a system is not common so we might not expect it to behave as a 

typical optical focusing system.  To investigate this, it is useful to introduce the Fresnel 

number, N, which quantifies the interrelationships among mirror size, wavelength, and 

focal distance. It is defined as 

df
aN
λ

2

= ,         (6-4) 

where a is the mirror radius, λ is the wavelength, and fd is the distance from the mirror to 

the focus.  It turns out that systems of high Fresnel number (N  1) behave as typical 

optical systems but systems with low Fresnel number (N  1) behave quite differently, 

specifically with respect to the location of the point of maximum intensity.  Li and Wolf 

[51] give an excellent discussion of systems of varying Fresnel numbers, which shall be 

followed presently. 

Consider a typical optical focusing system with a = 1 cm, fd = 5 cm, and 

λ = 500 nm.  According to equation 6-4, this system has N = 4000.  For a wave 

converging from the mirror in this system, the point of maximum intensity is coincident 

with the geometric focus.  On the other hand, both the THz imaging system and a 

proportionally similar optical system, have N = 32.  In this case, the reduced Fresnel 

number is due to the fact that the extent of the mirror encompasses far fewer 

wavelengths.  It is clear, therefore, that the Fresnel number of a system can be decreased 

by decreasing a, while keeping fd and λ fixed.  The effect of such action is to relatively 

flatten out the phase front over the aperture of the mirror.  Therefore the Fresnel number 
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essentially quantifies the relative flatness of the phase front over the diffracting aperture.  

If a was continually decreased, until N  1, the wave converging from the aperture 

would begin to appear more and more like a plane wave diffracting through a circular 

aperture.  At the same time, the point of maximum intensity would shift closer and closer 

to the plane of the aperture and would no longer be coincident with the geometric focus.  

When N finally became small enough, this situation would be better compared to a 

parabolic dish antenna (a ≈ 1 m, fd → ∞) operating at radio frequencies (λ ≈ 30 m), than 

to a typical optical system.  For the radio system and any other system where N  1, the 

field distribution produced by the “focused” wave is the far-field (Airy) pattern and is 

described by standard Fraunhofer diffraction theory. 

So we see that the THz system does not behave strictly optically, where typically 

λ  a and fd > a, nor does it behave like a radio wave antenna, where typically λ  a and 

fd  a.  That is, neither N  1 nor N  1 holds true.  Instead, the THz imaging system 

lies somewhere in between and care must be taken in using optical principles to describe 

the system.   

Since the THz imaging system is broadband, it has a continuum of Fresnel 

numbers ranging from 0 to about 100.  Reference [51] shows that deviation from typical 

optical behavior at the focal region would become significant for the THz system at 

Fresnel numbers less than 10.  This indicates that optical principles will describe the 

system with reasonable accuracy down to about 0.3 THz, and with greater accuracy for 

higher frequencies.  Moreover, the spectral portion of the THz pulse below 0.3 THz 

represents only a small portion of the overall pulse energy; further supporting the use of 

optical principles.  
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6.1.5  Diffraction Theory Foundation 

To better understand the form of the diffraction calculations it is useful to 

understand the foundation of scalar diffraction theory.  The theory is founded on 

Huygen’s principle, which states that every point on a propagating wavefront serves as 

the source of spherical secondary wavelets, such that the wavefront at some later time is 

the envelope of these wavelets [24].  Further, these wavelets propagate at the same 

frequency and speed as the original wave [24].  Knowing this, it is easy to see that 

Huygen’s wavelets can be mathematically expressed by free-space Green’s functions, 

which represent diverging spherical waves.  The next step in scalar, optical diffraction 

theory is to determine the interference patterns in some space due to a continuous 

distribution of wavelets within a finite aperture.  We find that this is mathematically 

expressed as an integral over a finite, continuous distribution of Green’s functions.  As 

will be seen, this integral is present in all the models of the THz imaging system. 

 

6.2  Debye Model 

One of the classic methods of finding the three-dimensional field distribution in the 

region of a geometric focus is the Debye integral as shown in Born and Wolf 

[25, Sec. 8.8].  Following Born and Wolf, with the exception of very minor notation 

changes, the treatment begins by assuming a perfectly spherical wave converging from a 

circular aperture of radius a.  The center of curvature of the spherical wave lies at point 

O, the geometric focus of the wave, as shown in Figure 6-2.  The scalar field distribution 

h(P) at a typical point P is solved using the Huygens-Fresnel principle, 
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( ) ( ) ( )
∫∫

−−=
W W

d

d S
s
jks

f
jkfAjPh

 
dexpexp

λ
.      (6-5) 

The Huygens wavelets are expressed in equation 6-5 by the free-space Green’s 

function inside the integral.  In this sense we see that the diffraction theory does little 

more than integrate the effects of a continuous distribution of wavelets over the surface of 

the finite, converging, spherical wavefront, W.  Note that this form of the Huygens-

Fresnel principle does not include the obliquity (or inclination) factor used to describe the 

varying strength of a Huygens wavelet as a function of angle.  The point P is specified by 

position vector R, relative to O.  The variable s denotes the distance between some point 

Q on the converging wavefront W, and the observation point P.  The variable q denotes 

the unit vector in the direction of OQ.  Assuming a λ, fd a and fd  |R|, we can 

approximate   
 

Rq •−=− dfs .          (6-6) 

The differential wavefront surface over which the integral was specified, dSW, can be 

expressed as 
Ω= dd 2

dW fS ,      (6-7) 

where dΩ is the solid angle differential element that dSW subtends at O. 
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Figure 6-2. Debye model setup, diffraction of a converging spherical wave from a 
circular aperture. 

 

Minor adjustments to amplitude terms do not affect the result appreciably 

therefore s can be replaced by fd in the denominator of equation 6-5.  After making all 

these substitutions, equation 6-5 becomes 
 

( ) ( ) Ω•−−= ∫∫Ω
d exp

 
RqjkAjPh

λ
.        (6-8) 

This is called the Debye integral and expresses the field, h, as a superposition of plane 

waves of different directions of propagation [25, Sec. 8.8.1].  The variable h was used to 

represent the field in this instance because equation 6-8 also represents the 

monochromatic PSF, or spatial impulse response of the system.  This notation was 

chosen to be consistent with the other models which will be presented later. 

The THz system can actually be approximated quite well by this model.  Consider 

the imaging system shown in Figure 6-3.  The point source object, located at the center of 

curvature of a spherical mirror, O, emits a perfectly spherical, diverging wave in all 

directions.  Some of the wave is intercepted by the spherical mirror and reflected.  The 

remainder of the wave is essentially apertured out by not being reflected.  Hence, the 
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reflection is a perfectly spherical wave converging from a circular aperture.  The wave 

converges back to the center of curvature of the mirror, where it forms an image of the 

point source.  Again, it is apparent that the focus of an apertured, converging, spherical 

wave is the image of the point source.  This one-to-one imaging arrangement is very 

similar to the actual THz imaging system and differs only in that the THz system has an 

off-axis imaging arrangement in the x direction, such that neither the object nor the image 

are located at the center of curvature of the mirror. 
 

 

y 

O 
z 

 
 

Figure 6-3. One-to-one imaging system producing perfectly spherical waves converging 
from a circular aperture (solid curves).  Dashed curves indicate waves 
diverging from the point source. 

 

6.2.1  Monochromatic Image 

The analytic solution to the Debye integral can be expressed in terms of Lommel 

functions and is outlined in Born and Wolf [25, Sec. 8.8.1].  The solution represents the 

complex, scalar field distribution, which is a function of r and z only, due to the rotational 

symmetry of the system around the z-axis, where 22 yxr += .  Figure 6-4 shows the 
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y = 0 slice of the three-dimensional focal region solution for a system with the same 

dimensions as the THz system, where fd = 610 mm, a = 76 mm.  The horizontal axis is 

labeled such that the value z = 0 corresponds to the geometric image plane of the mirror.  

This is a normalized field magnitude picture for the single frequency of 0.7 THz and is 

the image of a point source located at O in the system of Figure 6-3.  Since the solution is 

rotationally symmetric about the z-axis, Figure 6-4 describes the entire three-dimensional 

focal region. 

Figure 6-4 is not a field amplitude plot because the field is complex and the rapid 

phase variations obscure the overall focal structure.  Plotting the field magnitude removes 

these variations and clarifies the structure but at the same time, produces unexpected 

contours, most notably around the field zeros.  To clarify the contours of Figure 6-4, 

Figure 6-5 shows the field amplitude and magnitude patterns at z = 0. 
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Figure 6-4. Normalized field magnitude image of a point source at 0.7 THz using the 
Debye integral.  The geometric image plane is located z = 0.  A horizontal 
line marks the position of the first field zero in the geometric image plane. 

 

 
 

Figure 6-5. Normalized field amplitude (solid curve) at z = 0 of image of point source at 
0.7 THz.  Field magnitude is shown as dashed curve. 
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The most notable feature of Figure 6-4 is the elongated and tubular structure of 

the focus.  This structure is common to focusing systems and accounts for the significant 

tolerance in positioning the image plane.  The “length” of this tubular focus is inversely 

proportional to frequency.  Therefore, at 0.7 THz this focal region maintains 95% of the 

field magnitude over a z-span of ±10 mm, whereas at 2 THz this span would be reduced 

to about ±3.5 mm.  The figure also shows that the first field zero is at x = ±2.1 mm, in the 

geometric image plane (z = 0).  Not coincidentally, this is exactly the distance from the 

peak to the first null of the Airy disk, calculated with the formula, 1.22 fdλ / (2a).  This is 

a consequence of the fact that the Debye integral generates the Fraunhofer, or far-field 

diffraction pattern at the focal plane of the spherical mirror. 

 

6.2.2  Broadband Image 

For any single frequency, the solution obtained by evaluation of equation 6-8 

could theoretically be expressed in Cartesian coordinates as Ui(x,y,z).  This solution must 

be extended to account for the broadband nature of the THz imaging system and the 

resulting frequency-domain form is Ui(x,y,z,ω), a function of angular frequency, ω.  The 

broadband, time-domain, THz pulse, S(t), can also be expressed as a function of angular 

frequency by the Fourier transform, 

( ) ( ) ( )∫
∞

∞−

= ttjtSS dexp ωω ,      (6-9) 

This is a spatially independent, frequency-domain representation of S(t).  Since the Debye 

integral assumes that the wave converging from the aperture is uniform, there is no need 
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to specify the spatial dependence of the temporal signal.  In other words, it is unnecessary 

to use the general form of the signal, S(x,y,z,t), because it is constant  over the wavefront. 

Then, the imaging system can be thought of as a spatially dependent, temporal 

filter for the signal S(t).  Therefore, incorporating the frequency dependence into 

h(P) gives h(P,ω) = h(x,y,z,ω), which represents both the spatial impulse response and 

the temporal transfer function of the imaging system.  By linear system theory, the 

frequency-domain representation of the amplitude image, Ui(x,y,z,ω), is 
 

( ) ( ) ( )ωωω ,,,,,,U i zyxhSzyx = .        (6-10) 

Applying the inverse Fourier transform to equation 6-10 we finally obtain the time-

domain, broadband representation of the image, 
 

( ) ( ) ( ) ( )∫
∞

∞−

−= ωωωω
π

dexp,,,
2
1,,,Ui tjzyxhStzyx .         (6-11) 

Equation 6-11 gives the final form of the time-domain, broadband PSF of the system, as 

calculated with the Debye model. 

We notice here that equation 6-11 doesn’t explicitly show the temporal effect of 

the pulsed illumination traveling from the mirror to the image plane.  Since the imaging 

system is a temporal filter, it must account for the propagation time from the mirror to the 

image plane.  Therefore, we might expect to see some retarded-time term in the final 

solution, which, in the frequency domain would manifest itself as a phase term of the 

form 








c
sjωexp ,       (6-12) 
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where s retains its previous definition.  There is a simple reason why this term is not 

visible in equation 6-11.  In the transformation from equation 6-5 to equation 6-8 all the 

phase accumulated by the converging wave as it traveled from the mirror to the origin is 

taken into account but given a new reference.  The new phase reference for the 

calculation shifts from the wavefront (at the mirror) to the origin.  This is true for all 

frequencies.  Therefore the entire spectrum is now locked to a constant phase reference; 

which is the origin, where all the frequencies have the same phase.  In equation 6-5 the 

calculation essentially begins at the wavefront and ends in the vicinity of the origin.  In 

equation 6-8, the calculation begins at the origin and ends in the vicinity of the origin, so 

the retarded-time term never appears when the calculation is extended to the broadband 

pulse.  In essence, both phase and time have simply been reset, or shifted, such that the 

retarded-time term is no longer present.   

At the same time, the relative phase relationships between the spectral 

components of the pulse are maintained in its Fourier transform.  Therefore, multiplying 

the Debye integral solution h(x,y,z,ω) by the complex pulse spectrum S(ω) applies the 

appropriate phase shifts, determined by the pulse, to the spatial field distribution.  In this 

way, the solution in equation 6-11 generates both the proper phase relationship between 

spectral components and the proper spatial field distribution, even though the retarded-

time term is not present.  Since the system is time-invariant, these time shifts (or 

equivalently linear phase shifts) do nothing but change when the image appears, not what 

it looks like when it gets there. 

Figure 6-6 shows the time-domain amplitude image in the geometric image plane 

(located 610 mm from the mirror), calculated using equation 6-11.  Figure 6-7 shows two 
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other views of this image.  To illustrate the tolerance in the z-position of the image plane, 

Figures 6-8 and 6-9 show the time-domain image calculated at a plane located 6 mm 

farther from the spherical mirror than the geometric image plane.  For comparison, the 

time axes for all these figures have the same zero reference.  As expected, the pulsed 

image appears in the shifted image plane about 20 ps later than it appeared in the 

geometric image plane, where 20 ps = (6 mm)/c. 

 

 
 

Figure 6-6. Normalized broadband amplitude image of point source in geometric image 
plane using Debye model.  Plot consists of a set of contours corresponding to 
constant values in x.  
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Figure 6-7. (a) Side view of Figure 6-6 consisting of contours constant in x and y.  

(b) Contour plan view of Figure 6-6, contour spacing is 0.1, negative 
contours are dashed curves, heavy contours indicate 0 and 0.5 values.  The 
peak value of unity is designated by the dot. 
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Figure 6-8. Broadband amplitude image of point source in a plane shifted 6 mm from 
geometric image plane.  Plot consists of a set of contours corresponding to 
constant values in x.  Amplitude has same scale as Figure 6-6. 
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Figure 6-9. Broadband image of point source in 6 mm shifted image plane.  (a) plot 
consists of set of contours corresponding to constant values in x. (b) negative 
contours indicated by dotted lines, contour spacing is 0.1, heavy contours 
indicate 0 and 0.5 values.  Amplitude has same scale as Figure 6-7.  The 
peak value of 0.96 is designated by the dot. 
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Figures 6-6 through 6-9 show why care must be taken in expressing the image 

Ui(x,y,z,t) equivalently as either Ui(x,y,z) or Ui(x,y,t) as discussed in section 2.2.  

Changing the position of the image plane caused a minor change in the shape of the 

broadband image indicating that, t and z are not linearly dependent and they cannot 

strictly be expressed as functions of the other.  This seems like it would be especially true 

in the immediate region of the focus where one might expect the field variation to be 

rather rapid.  However, the elongated tubular structure of the focus provides a significant 

tolerance in z over as much as ±10 mm around the geometric image plane.   Furthermore, 

the temporal span of a THz image covers only about 17 ps, which translates into only 

2.55 mm of pulse travel.  Therefore, it is valid to assume that a typical THz image 

recorded in the geometric image plane would essentially be a time-shifted version of the 

image recorded in some other nearby plane.  In this way, t and z can be considered 

linearly dependent. 

 

6.2.3  Comparison 

Figure 6-10 shows a side view comparison between the actual image data from 

Figure 4-4 and the theory from Figure 6-7.  The angled orientation of actual images due 

to the illumination angle is not present in the theory but doesn’t appear in the side view 

regardless.  It is also noted that the theory doesn’t account for the profile of the 

illumination beam, mentioned in section 4.1.1.  Nevertheless, the figure clearly shows 

that the agreement between the theory and data is quite good. 
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Figure 6-10.  Comparison between (a) data from Fig. 4-4 and (b) theory from Fig. 6-7. 
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One difference is apparent in the negative amplitude portions of the images.  In 

the actual data there appears to be an initial negative peak followed by a larger negative 

peak behind (later in time).  In the theoretical image these negative peaks have the same 

magnitude.  This is due to a minor reshaping of the THz pulse by a constant phase term in 

the spectrum and could easily be accounted for in the theory by multiplying the THz 

spectrum by this phase term.  This is the same type of phase shift that was included in the 

input pulse to offset a –j coefficient (see section 6.1.1).  The minor correction was 

purposefully not included in the theory to bring out the point that such reshaping can 

change relative magnitudes of the positive and negative portions of the amplitude image.  

Under certain circumstances, such as with dielectric objects or small objects in very close 

proximity (under the range resolution limit), this could change overall image appearance 

by causing features to interfere differently.  In fact, such effects could cause features to 

disappear from the image.  This is another coherent resolution effect like the one 

mentioned in section 4.2, and could be described as a form of the speckle effect found in 

many coherent imaging systems [23 Sec. 6.5.3].  Due to the short duration of the THz 

pulse and the accompanying ranging behavior, the speckle effect is generally not as 

noticeable as it is in other systems.   

The THz pulse reshaping effect can also change the way in which image data is 

processed.  For example, it may be difficult to filter the image by applying a peak-picking 

algorithm (as in the image of the two 391 µm balls in section 5.7.1), because such a 

reshaping might cause peak identification problems.  This effect was not a problem for 

the THz imaging system due to the relatively symmetric form of the received pulse. 
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6.2.4  Debye Approximations 

Like the physical-optics (Kirchoff) approximation, the Debye integral prescribes 

some method by which the edge effects of the aperture are handled.  The Kirchoff 

boundary conditions imply that the field and its normal derivative inside the aperture in a 

plane immediately behind the screen are assumed to be equal to the values they would 

have if the screen were not present and assumed to vanish at points outside the aperture in 

the same plane.  In contrast, the Debye approximation assumes that the angular-spectrum 

of the incident field, not the field itself, is abruptly cut off by the edge of the aperture 

[26].  The notable effect is that the calculated focal region always appears symmetric on 

either side of the geometric image plane.  Such an assumption is not valid when the 

Fresnel number, N, of the system is low.  The Debye integral can be expected to return 

good results if N  1, where again, 

λdf
aN

2

= ,                (6-13) 

and if fd  a  λ [25,51].  Based on the calculated images, the Debye integral seems to 

be fairly well suited for the THz system.  

Wolf and Li provide a theoretical fix to the focal region reshaping in systems with 

low Fresnel numbers [51], but the Debye model has other problems.  One problem, in 

particular, is that in using the Debye integral to model the THz imaging system, it is 

impossible to remove the object from the origin.  This makes strict modeling of any 

object other than a point source at the origin impossible.  The theory always assumes a 

perfectly spherical wave converging to a single spot on the optical axis.  Any offset of the 

point source from the axis of the mirror would result in the converging wavefront 
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deviating from perfect sphericity.  Such an effect could be ignored if the system was 

assumed to be space-invariant.  To ensure that the space-invariance assumption was 

valid, however, other models were pursued. 

 

6.3  Goodman Model 

Goodman [23 Sec. 5.1-5.3] provides a simple example of a one-to-one imaging system 

which models the THz system quite well.  This is more general than the Debye model 

because it allows the source to be moved slightly from the system optical axis.  In 

Goodman, the physical system is modeled by a point source in some object plane, a 

single optic, and an image plane, as shown in Figure 6-11.  Goodman’s notation is 

followed closely except for the swap of variables specifying the xy-dependencies in the 

object and lens planes.  To maintain consistency with the previous definitions used in this 

dissertation the object and lens planes are assigned the variables (x,y) and (ξ,η), 

respectively.  These are reversed in Goodman.  Also, Γ is used to specify the image plane 

whereas Ui is reserved for the scalar image field within that plane. 
  

 

z1 z2 

Uo(x,y) Ul’(ξ,η) Γ(u,v) Ul(ξ,η) 

Source 
δ(0,0) 
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x 

Σ   
 

Figure 6-11.  Goodman model, one-to-one imaging system with a point source. 
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The mirror of the THz imaging system is modeled by a lens lying between planes 

Ul and Ul’.  This is valid since both mirrors and lenses are similar phase transformers.  

The point source, δ, is located in the object plane Uo at x = 0 and y = 0.  To match the 

THz system, z1 and z2 must be equal and the entire optical path length from the source to 

the image plane Γ must be 1.220 meters, including both the thickness, ∆0, of the lens and 

the effects of its index.  Since the lens will be approximated as a thin-lens later in the 

analysis, its effect can be summarized by simply specifying its focal length, fL, to be 

305 mm.  Then z1 and z2 are specified as 610 mm. 

The analysis of this system starts from the assumption of a monochromatic, 

spherical wave diverging from the point source.  It is incident upon the lens, which acts 

as the most limiting aperture, or exit pupil, in the system, and also transforms the 

diverging wave into a converging spherical wave by the phase function ∆(ξ,η).  The 

resulting field distribution in plane Ul’ is used in the First Rayleigh-Sommerfeld 

diffraction integral to determine the field on the image plane.  Specifically,  
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where r01 is the distance between some observation point (u,v) and some differential area 

dξdη lying in Ul’, within the pupil at point (ξ,η).  Again, the free-space Green’s function 

appears in the integral, this time multiplied by the complex field at the output plane of the 

lens, Ul’(ξ,η).  If Ul’(ξ,η) is assumed to be a converging spherical wave and z2 ≈ r01, then 

equation 6-14 is almost exactly the same as equation 6-5, thus showing the consistency 

between the Goodman and Debye approaches.  
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Many features of this analysis depend on the calculation of the distance between 

two points in three-dimensional space.  And, the system has many spherically shaped 

features, such as the wavefronts and lens faces, between which these distances are 

calculated.  So it is common to see terms similar to 
 

( ) ( )222
201 ηξ −+−+= vuzr     (6-15) 

throughout the analysis.  To simplify these calculations, the binomial expansion, 
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permits the removal of most higher order terms.  Equation 6-15 becomes 
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and is valid only for paraxial rays.  To simplify the calculation, this expression is 

substituted into the phase term, exp(jkr01), of equation 6-14.  Similar approximations 

simplify the phase term of the diverging spherical wave from the source, and simplify the 

mathematical description of the lens faces.  These expressions are embedded in the term 

Ul’(ξ,η) in equation 6-14.  The amplitude term, 1/r01 is not so critical in obtaining an 

accurate solution therefore it is approximated as 1/z2.  Together, these amplitude and 

phase simplifications comprise the Fresnel approximation. 

The expansion of equation 6-14, incorporating the diverging wave from the point 

source, the behavior of the lens, and the application of the Fresnel approximation 

throughout, collectively comprises the monochromatic PSF, h(u,v;x,y).  It is expressed as  
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The detailed procedure to arrive at equation 6-18 is given in [23, Sec 5.3.1].  

Equation 6-18 is equivalently the general form of an image formed in the image plane Γ 

at some point (u,v) from a point source in the object plane Uo at point (x,y).  The double 

integration limits are bounded by the pupil, Σ, which in this case is just defined by the 

circular, transverse extent of the lens.  Again, the variable fL is the focal length of the lens 

as determined by a standard thin-lens treatment and, to model the THz imaging system, is 

fL = 305 mm. 

 

6.3.1  Monochromatic Image 

The solution of Equation 6-18 must be solved numerically and represents the 

complex, scalar field distribution, which is a function of u and v only.  The calculation 

can be performed for many values of z2 to obtain the image of Figure 6-12, which shows 

the v = 0 slice through the three-dimensional, monochromatic focal region; equivalently 

the monochromatic image of a point source. 

For this image, the source is located at x = 0 and y = 0 so the system has rotational 

symmetry and it is sufficient to show only the single slice to describe the entire focal 

region.  To mimic the THz system, z1 = 610 mm, ∆0 = 0 since the lens is assumed to be 

thin, Σ is bounded by ≤+ 22 ηξ  76 mm, and z2 varies between 560 mm and 660 mm.  
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In the figure, the horizontal axis is labeled such that the value z = 0 corresponds to the 

geometric image plane, Γ, located at z2 = 610 mm.  Figure 6-12 is a normalized field 

magnitude image for the single frequency of 0.7 THz. 

As a point of clarification, we note that the imaging system has no magnification; 

so there is a one-to-one scale relationship between the variables (u,v) and (x,y).  

Therefore, images produced by the Goodman model, which have a (u,v) dependence, can 

be directly compared to experimental images and images produced by the Debye model, 

which have a (x,y) dependence.  Similarly, images produced by the hybrid model, which 

will be discussed in section 6.4, can also be directly compared to all the others. 

 

 
 

Figure 6-12.  Normalized field magnitude image of a point source at 0.7 THz. 
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One of the first things to notice about Figure 6-12 is the absence of symmetry on 

either side of the geometric focal plane at z = 0.  This non-linear “stretching” of the focal 

region indicates that Goodman’s approach automatically takes into account at least some 

of the effects of low Fresnel numbers.  Other parts of the image are strikingly similar to 

that of the Debye treatment.  The transverse width of the image is almost identical to that 

of the Debye treatment, especially at the geometric focal plane, and the general structure 

of the focal region is essentially unchanged.  Further comparisons will be given in later 

sections after all three models have been discussed. 

 

6.3.2  Broadband Image 

Extending the solution of the Goodman model to account for the full THz 

spectrum is similar to that of the Debye model.  But unlike the Debye model, the 

Goodman model is not re-expressed in terms of solid angles so it is possible to show the 

time-retarded phase term.  To explicitly express equation 6-14 as a function of frequency, 

we can rewrite it as 
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where the wavenumber, k, has been replaced using k = ωn/c.  For the THz system 

analysis, the index of the medium is n = 1 therefore k = ω/c.  We can also express Ui in 

the time-domain via the inverse Fourier transform, 
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Substituting equation 6-19 into equation 6-20 we get, 
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Rearranging terms yields 
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Equation 6-22 includes the expected retarded-time term, exp[–jω(t–r01/c)], accounting for 

the time it takes for the waves to propagate from the output of the lens to the image plane. 

Up to the exit pupil, only ray tracing is used to keep track of the phase behavior of 

the system.  Therefore U’l(ξ,η,ω) is nothing more than the spectrum of a delayed version 

of the original source pulse, S(t), where the delay, Φ, is a function of spatial location 

(ξ,η).  Hence, it can be expressed as  
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where Φ(ξ,η) is the time-delay of the original pulse, S, at location (ξ,η).  Knowing this we 

can see that equation 6-22 is the inverse Fourier transform of the product of the spatial 

field distribution and the time-shifted, complex spectrum of the broadband pulse.  

However, we also recognize that the solution of equation 6-18 already accounts for all the 

spatially varying phase delays, Φ(x,y), encountered by S(t) throughout the entire system.  

Therefore the total time-domain solution, can be simplified to 



 149 

( ) ( ) ( ) ( )∫
∞

∞

−=
-

i dexp
2
1,,U ωωωω
π

tjhStvu ,   [6-24] 

where S(ω) is the complex pulse spectrum and h(ω) is the PSF of equation 6-18 

calculated at all the frequencies, ω, in the bandwidth of the source pulse.  Equation 6-24 

gives the final time-domain form of the broadband PSF in the Goodman treatment.  

Clearly this solution is very similar to the Debye treatment, shown in equation 6-11, with 

a few exceptions; such as the choice of diffraction integral. 

Like the Debye treatment, the solution is time-invariant so that t = 0 can be shifted 

anywhere to easier display the data.  Figure 6-13 shows the time-domain image in the 

geometric focal plane, calculated using equation 6-24.  Figure 6-14 shows two other 

views of this image.   
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Figure 6-13. Normalized broadband image of point source in geometric image plane.  
Plot consists of a set of contours corresponding to constant values in x. 
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Figure 6-14. (a) Side view of Figure 6-13 consisting of contours constant in x and y.  
(b) Contour plan view of Figure 6-13, contour spacing is 0.1, negative 
contours are denoted by dashed curves, heavy contour indicates 0.5 value.  
The peak value of unity is designated by the dot. 
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6.3.3  Comparison 

Figures 6-13 and 6-14 are almost identical with the figures generated by the 

Debye treatment (Figs. 6-6 and 6-7).  The side-by-side comparisons of the Debye and 

Goodman model results will be presented after all three models have been discussed.  For 

now it is sufficient to say that the match between actual data and the Goodman model is 

very good, as it was in the Debye model.  Clearly, both approaches work well for 

describing the THz imaging system, but the Goodman model has more flexibility.  The 

lack of symmetry in the monochromatic field pattern on either side of the geometric 

image plane obtained by the Rayleigh-Sommerfeld diffraction integral doesn’t seem too 

noticeable due to fact that overall image is the superposition of all the frequencies of the 

THz pulse.  Since this symmetry issue would only be significant at low frequencies its 

effect is muted in the broadband image. 

 

6.3.4  Approximations 

The First Rayleigh-Sommerfeld integral involves the use of a modified version of 

the Kirchoff boundary conditions to account for the effects of the edge of the aperture.  

Specifically, the Kirchoff boundary condition is applied to the field alone, not its 

derivative.  Also, as in most scalar diffraction treatments, it was assumed that the radius 

of the aperture and the distance from the aperture to the observation plane were both 

much larger than a wavelength. 
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6.4  Hybrid Rayleigh-Sommerfeld Model 

Though it was not presented, it was possible to obtain the theoretical image for something 

other than a point source at the origin by using the Goodman model.  This made the 

Goodman model more versatile than the Debye model.  However, it was still rich in 

approximations and not really designed for off-axis systems.  To account for the off-axis 

geometric aberrations in the system, particularly astigmatism, a hybrid model was 

formulated, having the same layout and dimensions of the THz system. 

The Debye and Goodman models had the advantage of neglecting the complex 

diffraction treatment of aberrations and this omission greatly simplified calculations.  In 

[25], Born and Wolf devote all of chapter 9 to the diffraction theory of aberrations; but 

this theory is very complex and not readily adaptable to a real imaging system wherein 

many aberrations occur at once.  The hybrid theory accounts for aberrations by using a 

geometric optics analysis up to a specific plane within the system.  At this point, 

diffraction theory accounts for the remainder of the analysis.  The calculations are 

performed numerically with the end goal being the simple computation of the image, not 

the any analytic expression for it.  Simple diffraction integrals for THz systems are not a 

significant challenge to computers with standard math software, so this hybrid method 

takes advantage of computing speed to formulate an image without the use of overly 

difficult mathematical methods. 
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6.4.1  Calculation Duration & Precision 

Even though computing speed is available to quickly perform multiple diffraction 

calculations for the THz imaging system, the same is not universally true for any system.  

Numerical calculations require a discrete representation of the waves and diffraction 

integrals.  For a given system, the phase of a wave over the diffraction aperture varies 

much more slowly for THz frequencies than for optical frequencies, so far fewer points 

(or a sparser grid) can be used to accurately represent the wave.  Therefore, far fewer 

points need to be integrated over and the duration of the calculation is drastically 

reduced.  In this respect it is clear that calculation duration can be directly related to the 

Fresnel number of the system.  For systems with large Fresnel numbers, such as typical 

optical systems, calculation times could be exceedingly long.  Systems with equal Fresnel 

numbers should have nearly equal calculations times. 

For reference, a typical, one-dimensional, broadband THz image in a single 

z-plane, like the one in section 6.3.2, takes less than 30 seconds to calculate for a 2.8 GHz 

Pentium 4 processor with 1 GB of memory.  The upcoming calculations for the hybrid 

model are two-dimensional and therefore the calculation time is usually increased by a 

factor of about 60.  For a typical two-dimensional, broadband THz image in a single 

z-plane, the calculation time is about 10-15 minutes.  One can see that if the calculation 

for a typical optical system required 10 times the number of data points in each transverse 

dimension to represent the diffracting wave, then the calculation time would be increased 

by about 100 times, making such calculations very long and far less usable.  In this 

respect we can see that the THz system has a significant advantage with respect to 
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calculation times, due to its relatively small Fresnel numbers. 

For the THz system, a good trade-off between accuracy and speed was found if 

the calculations were performed with a bundle of rays that formed a spatial grid of 151 × 

151 points over the face of the spherical mirror.  Even though this grid density is not 

strictly sufficient to unambiguously map the phase distribution over the diffraction plane 

at higher frequencies (>1.5 THz), it was found to yield results with good accuracy in the 

aforementioned calculation times.  To ensure the accuracy of these results, additional 

broadband calculations were performed with grids of 351 × 351.  This grid density 

provides over two data points per every oscillation of the phase distribution of the 

wavefront over the diffraction plane, up to approximately 2 THz.  For lower frequencies, 

this condition is improved.  It was found that calculations using the 151 × 151 grid size 

matched larger grid results very well.  Additionally, since a very large portion of the THz 

bandwidth exists at lower frequencies centered around 0.7 THz, even smaller grid sizes, 

down to 51 × 51, still produced similar broadband results.   

One final issue of importance in the calculations was numerical precision.  This 

problem represents a potentially significant obstacle when performing calculations with 

sub-mm wavelengths over distances exceeding half a meter.  In such instances, numerical 

precision could possibly alter the phase of a wave enough to completely change its 

interference behavior at the image plane.  Fortunately, this is not the case for the THz 

system.  Consider the shortest wavelength used by the THz system, approximately 

125 µm.   For phase precision to 1/10th a wavelength, calculations over 600 mm must be 

accurate to about one part in 50,000.  This is clearly no challenge for math software, even 

when operating in single precision mode where 23 mantissa bits are available for 
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precision to about 7 decimal places, or one part in 10,000,000.  This indicates that even 

optical images could be calculated with almost λ/10 phase precision in the same system.  

Moreover, the math software used in the THz calculations (MATLAB® Version 6.1) [52] 

performed operations in double precision mode, thereby alleviating any concern for 

numerical precision. 

 

6.4.2  Hybrid Model Setup 

The hybrid model of the THz system begins with a point source located at point O 

with coordinates (x,y,z) as shown in Figure 6-15. 
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Figure 6-15.  Layout of hybrid model of THz imaging system. 

 

The object is assumed to be a point source emitting an isotropic, diverging 

spherical wave.  This wave is represented in a geometric optics fashion by a bundle of 

rays (shown in Figure 6-15 as solid gray lines) propagating toward the spherical mirror.  
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Using the law of reflection from a metal surface the rays are reflected from the mirror and 

intersect with the diffraction plane, Σ.  The location of each ray and the overall distance it 

has traveled when it intersects with Σ is then calculated with basic geometry.  Knowing 

the distance traveled and the wavelength of the radiation provides a phase distribution 

over the plane Σ.  Rays that never intersect the mirror are not reflected to the diffraction 

plane; therefore the extent of the spherical mirror is automatically projected onto the 

diffraction plane to define the exit pupil of the system.  It is also noted that, due to the 

off-axis setup, the shape of the exit pupil is somewhat elliptical from the vantage of the 

axial image point.  This is automatically taken into account by the ray tracing.  Having 

treated the system with geometric optics, the calculated field distribution inside Σ already 

accounts for the relevant geometric aberrations. 

All the rays from the source are assumed to have the same strength at the 

diffraction plane, Σ, therefore the entire field distribution is known therein.  With this 

planar field distribution, the First Rayleigh-Sommerfeld diffraction integral (equation 

6-14) is used to calculate the resulting field distribution in the image plane, Γ.  Figure 

6-16 shows the setup for this leg of the model.  As in the Goodman model, the distance 

between the diffraction and image planes is z2, and the distance between the differential 

element dξdη and the observation point P is r01.  Integration takes place over the region of 

the diffraction plane bounded by the pupil. 
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Figure 6-16.  Setup for diffraction leg of hybrid model. 
 

The model is designed to take advantage of computing power, so no further 

approximations are made to any of the phase terms or distances.  For example, r01 is 

computed exactly as it is shown in equation 6-15. 

 

6.4.3  Monochromatic Image 

The monochromatic image is finally obtained by numerically integrating equation 

6-14, where the field distribution in Σ, calculated by geometric optics, is substituted in for 

the term U’l(ξ,η).  As before, the calculation can be performed for many values of z2 to 

obtain the images of Figure 6-17, which shows the u = 0 mm and v = 0 mm slices through 

the three-dimensional image.  With the inclusion of the off-axis layout, the system no 

longer has rotational symmetry and it is necessary to show the image in several slices to 

describe the entire focal region.  To mimic the THz system, z2 = 598 mm, and the pupil is 
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defined by the projection of the spherical mirror onto the diffraction plane.  Like the real 

THz system, the radius of the spherical mirror is 76 mm.  The horizontal axis in Figure 

6-17 is labeled such that the value z = 0 corresponds to the plane located 598 mm from 

the diffraction plane, or z2 = 598 mm.  The images in Figure 6-17 are normalized field 

magnitude pictures for the single frequency of 0.7 THz and show the three-dimensional 

PSF as calculated by the hybrid model. 

 

 
 

Figure 6-17. Field magnitude slices of normalized three-dimensional image of point 
source at 0.7 THz.  (a) v = 0 mm slice.  (b) u = 0 mm slice. 
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Like the Goodman treatment, the hybrid model images show a non-linear 

stretching of the focal region, which is present in systems of low Fresnel number.  The 

general shape of the focal region is not too different from the other treatments and the 

focal region maintains its tubular shape and still has a similar overall structure.  This 

indicates that there is still significant tolerance in positioning the image plane, though not 

as much as before.  Nevertheless the focal region retains 95% of its peak value over a 

z-span of about ±7 mm at 0.7 THz.  The most striking feature of Figure 6-17 is the 

cylindrical asymmetry about the optical axis.  The cause of this asymmetry is almost 

entirely astigmatism.  This was expected since the astigmatism portion of the aberration 

function follows a square dependence on the off-axis imaging angle, whereas other 

aberrations follow a singular dependence at most.  The astigmatism is easily visible by 

looking at transverse plots of the image.  Figures 6-18 and 6-19 show several transverse 

contour plots of the three-dimensional image of a point source at 0.7 THz.  Figure 6-19 

shows the PSF in the geometric image plane for 0.7 THz. 

As expected from geometric optics the primary image, also called the tangential 

line focus, is vertical in orientation and lies nearest to the spherical mirror.  The 

secondary image, also called the sagittal line focus, is horizontal in orientation and lies 

farthest from the spherical mirror.  Using geometric optics, the spatial separation between 

the tangential and sagittal foci can be found to be only about 9 mm.  The specific 

locations of these foci are not easily identifiable in the images of Figure 6-17 because the 

effects of astigmatism are not nearly as significant as those of diffraction.  Between these 

two foci lies the plane containing the circle of least confusion (COLC) wherein imaging 
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is most correct.  Figure 6-19 shows the image in this plane.  At 0.7 THz the image retains 

this shape quite well over a z-span of ±5 mm from the plane containing the circle of least 

confusion.  At 2 THz this span would be reduced to about ±1.75 mm. 

 

 

 
 
 
 

Figure 6-18.  Transverse images of point source at 0.7 THz in (a) z2 = 574 mm, 
(b) z2 = 586 mm, (c) z2 = 610 mm, (d) z2 = 622 mm.  All images have same 
amplitude scale. 

 



 162 

 
 

Figure 6-19. Transverse image of point source at 0.7 THz at circle of least confusion 
(z2 =  598 mm).  The amplitude scale is the same as that used in Figure 
6-18. 

 

6.4.4  Broadband Image 

Accounting for the full spectrum of the THz pulse is equivalent to previous 

methods.  As in equation 6-24, the spectrum of the pulse S(ω) is multiplied by the 

frequency dependent spatial field distribution (PSF) and the broadband image is the 

inverse temporal Fourier transform of this product.   The only difference is that the PSF, 

represented by h(ω), is slightly different due to the off-axis system.  Again, absolute time 

shifts can be neglected due to the time-invariance of the system.  Figures 6-20 and 6-21 
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show the u = 0 and v = 0 slices through the two-dimensional broadband image of a point 

source calculated via the hybrid method.  The image plane for these figures was 

positioned at the circle of least confusion, z2 = 598 mm. 

 

 
 

Figure 6-20. Normalized broadband image of point source using hybrid model, (a) u = 0 
slice, (b) v = 0 slice. 
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Figure 6-21. Normalized contour plan view of broadband point source image calculated 
with hybrid model.  (a) u = 0 slice, (b) v = 0 slice.  Contour spacing is 0.1, 
negative contours are denoted by dashed curves, heavy contour indicates 
0.5 value.  The peak value of unity is designated by the dot. 
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6.4.5  Comparison 

In order see their similarities, both the monochromatic and broadband images 

from all three models are shown in the following figures.  Figure 6-22 shows the 

monochromatic images at 0.7 THz for all three models. 
 

 
 
 
Figure 6-22. Monochromatic comparison images of point source calculated at 0.7 THz 

using (a) hybrid model, v = 0 slice, (b) hybrid model, u = 0 slice. 
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Figure 6-22. (cont.)  Monochromatic images of point source calculated at 0.7 THz using 

(c) Goodman model, (d) Debye model. 
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Figure 6-23 shows the one-dimensional broadband images of a point source using 

all three models. 

 

 
 
 

Figure 6-23. One-dimensional broadband image of point source using (a) hybrid model, 
u = 0 slice, (b) hybrid model, v = 0 slice. 
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Figure 6-23. (cont.)  One-dimensional broadband image of point source using 
(c) Goodman model, (d) Debye model. 
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The comparisons show that all three models return very similar results.  The most 

notable differences in both the broadband and monochromatic images are found in the 

hybrid model.  As already discussed, astigmatism causes the asymmetry in the 

monochromatic image calculated by the hybrid model.  The continuing effect of 

astigmatism is also apparent in the broadband image where the wings of the image are 

slightly reshaped.  To ensure these effects weren’t caused by calculation inaccuracies, the 

hybrid model was also tested in a configuration wherein the off-axis angle of the system 

was set to zero.  This allowed direct comparison to the images calculated by the other 

models.  This experiment removed the effects of astigmatism and yielded images 

extremely similar to the other model images. 

These comparisons indicate that all the models work quite well at describing the 

THz system but the direct accounting for aberrations and the flexibility afforded by the 

hybrid model make it the most useful.  For this reason, the hybrid model was chosen for 

all the remaining comparisons to actual data. 

  

6.4.6  Illumination Angle 

Since all the models assumed a self-luminous object, some accounting was 

necessary for the fact that, in the real system, this is not the case.  Based on the agreement 

between theory and data so far, it would appear that this is not a significant issue.  For 

completeness, however, the theoretical correction for this situation is now discussed.  We 

note first that the only prominent effect of the illumination angle is the skewed 

appearance of the image.  In comparing theory and data it appears as though each spatial 
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sample is not changed significantly in shape but is only shifted in time.  This is actually 

the case because in the normal imaging setup, the object never actually translates in z; 

therefore the image plane also remains fixed in z.  However, in its transverse motion, the 

object does pass through the angled illumination creating different pulse arrival times.  

Therefore, the obvious accounting of this phenomenon is to temporally shift each spatial 

sample in the theoretical image.  The shift amount is determined by recalling that as the 

object moves δx in the +x direction, it moves nearer to the transmitter by an amount 

δx·sin(17°), given the geometry shown in Figures 3-1 and 3-2.  The illumination travels at 

c, therefore the time shift of each spatial sample should be δx·sin(17°)/c, which is equal to 

δx·0.97457 ps/mm, δx being expressed in mm.  For positive and negative δx this is a shift 

earlier and later in time, respectively.  However, as discussed in section 4.1, the sampling 

nature of the system causes the receiver to sample the –x side of the image as the object 

moves in the +x direction.  Therefore, positive and negative δx translate into shifts later 

and earlier in time, respectively.  Since u and x are equivalent in scale, shifting the 

individual spatial samples by the amount prescribed yields the new broadband image 

shown in Figures 6-24 and 6-26.  Only the v = 0 image data is shown because the angled 

illumination doesn’t affect the image in the v direction.  These figures show the final 

form of the theoretical image of a point source and therefore represent the final form of 

the theoretical, broadband, amplitude PSF for the system.  For comparison to data, 

Figures 6-25 and 6-27 show the actual image of a point source from section 4.1.  
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Figure 6-24. Slice v = 0, through two-dimensional THz image of point source under 
angled illumination.  Final theoretical, broadband PSF of THz imaging 
system. 

 

 
 

Figure 6-25. THz image of point source.  Experimental, broadband PSF of THz imaging 
system. 
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Figure 6-26. Contour plan view of Figure 6-24.  Contour spacing is 0.2, negative 
contours are dashed curves.  The peak value of unity is designated by the 
dot. 

 
 

 
 

Figure 6-27.  Contour plan view of Figure 6-25.  
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6.4.7  Diffraction Test by Mirror Size Reduction 

In section 4.1.1, it was shown that halving the diameter of the spherical mirror 

resulted in a 1.72 times increase in the FWHM of the image of a point source.  It was also 

stated that this is consistent with the theory for a diffraction limited system.  This fact is 

now demonstrated.  Figure 6-28a shows the side view of the image generated by the 

hybrid model using a spherical mirror with a 76.2 mm diameter, and Figure 6-28b shows 

the same theoretical image with the profile of the illumination beam taken into account.  

Figure 6-28c shows the side view of the experimental data for comparison. 
 

 
 
 

Figure 6-28. Comparison between theory and data for image of point source with 
76.2 mm diameter spherical mirror.  (a) theory image, no account for 
illumination beam profile. 
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Figure 6-28. (cont.) (b)  theoretical image with illumination beam profile accounted for 
(c) actual data from section 4.1.1. 
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The match between theory and data is quite good indicating that the THz imaging 

system is well-corrected.  Since the receiver is not included in the theoretical models, 

these data reinforce the assumption that the effect of the receiver on the image is 

negligible. 

 

6.4.8  Two Point Sources 

There are two methods by which one can obtain the theoretical image of an object 

consisting of two point sources situated near each other.  The first is to fully calculate the 

two individual images and superpose them.  This most closely resembles what occurs in 

the actual THz imaging system and is the more correct solution.  The second is to assume 

the THz system is both space-invariant (isoplanatic) and time-invariant, and then 

convolve the broadband PSF with two delta functions located in the positions of the point 

sources.  One potential problem associated with this method is the assumption of space-

invariance.  The THz system is not strictly isoplanatic because image magnification and 

the geometric focal plane locations change as the object moves in the z direction.  Also, 

image aberrations, astigmatism in particular, become greater as the object moves farther 

from the system optical axis.  For large enough object translations, the effects of these 

aberrations would be greater than those of diffraction.  However, the elongated, tubular 

shape of the image alleviates much of the space-variance problem by providing tolerance 

in the z-position of the object.  Furthermore, the region bounding the transverse extent of 

the object in the THz system is sufficiently small, so the system behaves isoplanatically 

therein. 



 176 

It is noted that the operation of the actual THz system involves translating the 

object such that the image translates in front of the fixed receiver.  The theoretical image, 

however, is generated by assuming a fixed object and an array of receivers.  In the theory, 

an object with large transverse extent would not be a good candidate for the assumption 

of space-invariance.  For the actual system, however, every spatial sample of the image is 

observed from the same fixed point, as the image passes by.  This also means that the 

object, as it moves, is always viewed by the system from the same fixed point.  Now, the 

THz image of a point source is small enough that the source can be moved only 2 mm 

from center before most parts of the diffraction limited image fall from view.  This means 

that any object, passing farther than 2 mm from the “seeing” point of the system falls out 

of view.  Therefore, as long as the assumption of space-invariance is good over a circular 

transverse region with radius of 2 mm, the entire actual imaging system can be 

considered isoplanatic.  This assumes the object is confined sufficiently in z such that 

magnification and focusing are not issues.  All this means that the actual THz imaging 

system should be able to accurately image objects with much larger extent than the 

isoplanatic patch.  It also means that the convolution method of determining the overall 

theoretical image should be very accurate, given objects with limited extent in the z 

dimension. 

Figures 6-29 and 6-30 show the result of both the superposition and convolution 

methods of analysis, respectively.  Both figures show the one-dimensional images of two 

point sources separated by 1.4 mm in x and 1.1 mm in z.  They are in the same form as 

Figure 4-15 for comparison. 
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Figure 6-29. Superposition of two normalized point source images.  Contours are 
separated by 0.2.  Negative contours denoted by dashed curves. 
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Figure 6-30. Two-dimensional convolution of two delta functions with the THz PSF.  

Contours separated by 0.2.  Negative contours denoted by dashed curves. 
 

Figure 6-30 shows the two-dimensional convolution of two delta functions with 

the PSF.  The sharp cutoff features located at about u = 5.3 mm and 0.7 mm are artifacts 

of the convolution process and the fact that the PSF was only defined over a 0 to 6 mm 

transverse range.  The image of Figure 6-29 was made by first calculating the image of a 

single point source, then calculating the image again after moving the point source 

1.1 mm in z and 1.4 mm in x.  The two resulting images were finally superposed.  Since 

both calculations were performed over the entire observation range the cutoff artifacts are 

not present.  Figure 6-31 shows a side-by-side comparison between Figure 6-29 and 4-15. 
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Figure 6-31. Comparison between (a) normalized theory, and (b) data from section 4.2.  
Negative contours are denoted by dashed curves. 
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The similarity between the convolution and superposition images illustrates the 

fact that the system is essentially space-invariant.  Therefore, it is possible to predict the 

image of a much more complicated object by simply convolving the object with the PSF.  

It is noted, however, that the theory assumes a self-luminous object and then later 

corrects the timing effects of the angled illumination and the ranging nature of the 

system.  This is not strictly equivalent to the experimental arrangement because stealth 

effects like those illustrated in Figure 5-30 could make extended objects invisible to the 

system.  While the theory may predict a visible image, the experimental arrangement 

will, in certain cases, yield dissimilar results. 

 

6.5  Arrayed Images 

Having already formed a working model for the image of a point source it is very easy to 

extend the theory to arrayed imaging.  Just as is in the actual system, theoretical arraying 

requires only the superposition of images to obtain an overall arrayed image.  For all the 

following theoretical arrayed images the broadband, hybrid model was used to generate 

the individual images.  In addition, all the individual images were calculated with a 

proper phase relationship among them such that arraying would be successful.   

The elongated cylindrical shape of the focal region permits the following 

approximation to be made when considering arrays wherein the angular separation 

between array elements is sufficiently small (< 20°).  Recall that the object is scanned in 

an angled configuration to achieve the effects of a synthetic mirror.  Consequently the 

scan plane has a slight z-dependence when it is tilted about either the x or y axis.  
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Therefore most of the spatial samples of the image will be recorded when the object had 

some non-zero z-location.  For small angular separation between array elements this 

z-motion can be neglected as far as its effect on the spatial field distribution goes.  The 

z-motion must be accounted for in timing, however, but this can easily be done in 

conjunction with the timing shifts used to correct for the illumination angle.   Simple 

time-delays are appropriately added to the spatial samples depending on their (u,v) 

positions and the angular separation between the array elements.  Recall that the 

illumination path length change for tilted scans planes caused an effective doubling of the 

overall phased-array aperture size.  This phenomenon also occurs for theoretical arrayed 

imaging, as expected. 

 

6.5.1  Single 1 mm Ball 

It was mentioned in section 5.6 that the arrayed image of a single 1 mm ball 

(point source) matched well with theoretical predictions.  Therefore the theoretical 

arrayed image of a point source is now demonstrated.  For this calculation the source was 

located at x = y = 0 and two images were calculated with scan plane orientations tilted at 

0° and –16° about the x-axis.  The results of this calculation are shown in Figures 6-32 

and 6-34 and are shown along with the actual data images from section 5.6.2 in Figures 

6-33 and 6-35. 
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Figure 6-32. Slice x = 0 through normalized theoretical phased-array image data.  
Contours separated by 0.125.  Negative contours denoted by dashed curves.  
Contour at 0.125 shown as heavy curve to outline pulse peaks. 

 
 

 
 

Figure 6-33. Slice x = 0 through normalized, experimental, phased-array THz image of a 
point source.  Contours separated by 0.125.  Negative contours denoted by 
dashed curves.  Contour at 0.125 shown as heavy curve to outline pulse 
peaks. 
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Figure 6-34. Normalized theoretical transverse images of THz point source. (a) 0° 
energy image (b) 16° energy image, (c) phased-array energy image, (d) 0° 
amplitude image, (e) 16° amplitude image, (f) phased-array amplitude 
image.  Contours separated by 0.1.  Negative contours denoted by dashed 
curves.  Contour for 0.5 shown as heavy curve. 
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Figure 6-35. Normalized experimental transverse images of THz point source. (a) 0° 
energy image (b) 16° energy image, (c) phased-array energy image, (d) 0° 
amplitude image, (e) 16° amplitude image, (f) phased-array amplitude 
image.  Contours separated by 0.1.  Negative contours denoted by dashed 
curves.  Contour for 0.5 shown as heavy curve. 

 
 

The theoretical images show a good agreement with the data in terms of both 

transverse resolution and side lobe amplitude, indicating that the theoretical approach to 

describing the arrayed images is valid. 
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6.5.2  Two 400 µm Balls 

For more comparisons to actual data, the theoretical arrayed image of two point 

sources separated by 400 µm in y and 50 µm in z was calculated.  These sources have 

essentially the same layout as the two 391 µm balls used to obtain Figures 5-16, 5-18, and 

5-19 in section 5.7.1.  Arraying was done in the vertical direction only and array 

orientations were 0°, 10° and –10°, just as in the actual data.  Again, the theory corrects 

the timing effects of the angled illumination and the ranging nature of the system, but 

assumes a self-luminous object.  Therefore the double reflection feature which was 

present in the experimental data did not appear in the theory.  Figures 6-36, 6-38a and 

6-39a show the calculated array images for this object.  Figures 6-37, 6-38b and 6-39b 

show the actual imaging data from section 5.7.1 for comparison.  Recall that in Figures 

6-38 and 6-39 the experimental images are shifted up 200 µm in y, relative to the 

theoretical images due to the method by which the phase lock was established.  This does 

not affect the comparison. 

Again, the agreement between theory and data suggests the system is operating 

very near to theoretical limits as assumed.  Moreover it shows the validity of using time-

delays to mimic the z-motion of the object, thus demonstrating, once again, the tolerance 

in z and the effective equivalence in t and z. 
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Figure 6-36. Slice u = 0 through normalized, theoretical, phased-arrayed image of two 

point sources. Contour separation = 0.15.  Negative contours are indicated 
by dashed curves. 

 

 
 

Figure 6-37. Slice x = 0 through experimental, phased-array image of two balls.  
Contours are separated by 7 pA.  Negative contours are indicated by dashed 
curves. 
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Figure 6-38. Normalized transverse arrayed energy images of two point sources, (a) 
theoretical image, (b) experimental image from section 5.7.1.  Contour 
separation = 0.1. 

 
 

 

         
 

Figure 6-39. Transverse isoamplitude plots.  Surfaces contain data values which have 
amplitude greater than 80% of the peak amplitude.  (a) theoretical image, 
(b) experimental image from section 5.7.1.   
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Chapter 7     

Conclusions 

 

 

A quasi-optic, synthetic, phased-array THz imaging system has been presented in this 

dissertation.  The system forms real, coherent, diffraction-limited, THz amplitude images 

which by means of a large-aperture spherical mirror.  The images are complete and 

independent, yet have well-defined phase relationships allowing them to be combined 

with simple AS methods to achieve higher resolution imaging.  Due to the pulsed 

illumination, the system exhibits not only transverse spatial resolution but also ranging 

resolution.  This radar behavior allows the system to perform imaging over two spatial 

dimensions and one temporal dimension simultaneously, and also provides a natural 

means of phase-locking multiple images together for AS. 

The first part of the study demonstrated one-dimensional imaging of point 

sources.  By imaging a point reflector, the broadband, amplitude PSF of the system was 

determined.  It was found that the system was well-corrected (or diffraction limited) and 

the resolution was limited by the extent of the spherical mirror.  Decreasing the size of 

this mirror caused a decrease in the transverse resolution by an amount that agreed very 

well with theoretical predictions.  At the same time, range resolution was unaffected.  

Imaging two point sources together highlighted some of the resolution benefits of a 

coherent, pulsed imaging system.  In particular, the transverse spatial resolution between 
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two image features was enhanced by their temporal separation, which does not permit 

them to smear together into one un-resolvable unit. 

The second part of this study demonstrated an AS technique whereby the 

spherical mirror was effectively moved, thus acting as a synthetic phased-array element.  

Several images were recorded, each by a different phased-array element.  Combining 

these separate images formed a higher resolution, composite image.  Due to the sparse-

aperture setup, no image reconstruction was necessary when the images were properly 

phase locked to a common reference.  Instead, this form of AS was accomplished by 

simple superposition of separate images.  Both vertical and horizontal arraying were 

demonstrated and exhibited resolution gains of about four times.  Many different forms of 

image processing were demonstrated, and each highlighted the power and flexibility 

inherent in a coherent, pulsed imaging system.  Other imaging phenomena, such as object 

stealth and artificial aperture doubling, were also explained and showed some of the more 

unconventional attributes of the THz imaging system. 

Finally, the last part of this dissertation presented three theoretical models of the 

THz imaging system.  Each successive model incorporated more of the physical 

attributes of the actual system and provided a more accurate picture of how the system 

behaved.  All of the models used, to some extent, a combination of geometric optics and 

diffraction theory.  Since the models assumed self-luminous objects, they were able to 

account for all the features in the data except for higher order effects such as double 

reflections between closely placed objects.  All of the models verified that the system was 

well-corrected and that the effect of the receiver on spatial resolution was negligible.  The 

models were all compared to each other and to the experimental data and all showed 
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good agreement. 

This study demonstrated the feasibility of a system that can produce THz images 

sharp enough to resolve features whose size was on the order of a wavelength or less.  

Such an imaging system promises application in many types of non-invasive imaging 

arenas for which microwave techniques cannot obtain sharp enough resolution and 

optical techniques cannot be used due to opacity or optical sensitivity.  One problem not 

addressed in this dissertation is the fact that data collection is very slow.  Typical, 

individual, two-dimensional images require several days to record.  This duration is 

multiplied in arrayed imaging due to the fact that many images must be collected.  With 

more research in THz technologies, it is likely that much more powerful transmitters will 

become available.  In this case, data collection could be drastically accelerated because 

long integration time would no longer be necessary to achieve usable SNRs. 

 



 191 

References 

 

1. D. H. Auston, K.P. Cheung, and P.R. Smith, “Picosecond photoconducting Hertzian 

dipoles”, Appl. Phys. Lett. 45, 284-286 (1984). 

 

2. M. B. Ketchen, D. Grischkowsky, T. C. Chen, C-C. Chi, I. N. Duling, III, N. J. 

Halas, J-M. Halbout, J. A. Kash, and G. P. Li, “Generation of subpicosecond 

electrical pulses on coplanar transmission lines”, Appl. Phys. Lett. 48, 751-753 

(1986). 

 

3. B. B. Hu, X.-C. Zhang, D. H. Auston and P. R. Smith, “Free-space radiation from 

electro-optic crystals”, Appl. Phys. Lett. 56, 506-508 (1990). 

 

4. Q. Wu and X.-C. Zhang, “Free-space electro-optic sampling of terahertz beams”, 

Appl. Phys. Lett. 67, 3523-3525 (1995). 

 

5. B. B. Hu and M. C. Nuss, “Imaging with terahertz waves”, Opt. Lett. 20, 1716-1718 

(1995). 

 

6. D. M. Mittleman, S. Hunsche, L. Boivin, and M. C. Nuss, “T-ray tomography”, Opt. 

Lett. 22, 904-906 (1997). 

 

7. Q. Wu, T. D. Hewitt, and X.-C. Zhang, “2-dimensional electro-optic imaging of THz 

beams”, Appl. Phys. Lett. 69, 1026-1028 (1996). 

 

8. Z. Jiang and X.-C. Zhang, “Single-shot spatiotemporal terahertz field imaging”, Opt. 

Lett. 23, 1114-1116 (1998). 

 

 



 192 

9. D. M. Mittleman, M. Gupta, R. Neelamani, R.G. Baraniuk, J.V. Rudd, and M. Koch, 

“Recent advances in terahertz imaging”, Appl. Phys. B 68, 1085-1094 (1999). 

 

10. K. McClatchey, M. T. Reiten, and R. A. Cheville, “Time resolved synthetic aperture 

terahertz impulse imaging”, Appl. Phys. Lett. 79, 4485-4487 (2001). 

 

11. D. M. Mittleman, R. H. Jacobsen, and M. C. Nuss, “T-Ray Imaging”, IEEE J. Sel. 

Top. Quant. Electron. 2, 679-692 (1996). 

 

12. D. Grischkowsky, S. Keiding, M. van Exter, Ch. Fattinger, “Far-infrared time-

domain spectroscopy with terahertz beams of dielectrics and semiconductors”, J. 
Opt. Soc. Am. B 7, 2006-2019 (1990). 

 

13. L. Thrane, R. H. Jacobsen, P. Uhd Jepsen, and S. R. Keiding, “THz reflection 

spectroscopy of liquid water”, Chem. Phys. Lett. 240, 330-333 (1995). 

 

14. J. T. Kindt and C. A. Schmuttenmaer, “Far-infrared dielectric properties of polar 

liquids probed by femtosecond terahertz pulse spectroscopy”, J. Phys. Chem. 100, 

10373-10379 (1996). 

 

15. M. van Exter, C. Fattinger, and D. Grischkowsky, “Terahertz time-domain 

spectroscopy of water vapor”, Opt. Lett. 14, 1128-1130 (1989). 

 

16. M. van Exter and D. Grischkowsky, “Characterization of an Optoelectronic 

Terahertz Beam System”, IEEE Trans. Microwave Theory Tech. 38, 1684-1691 

(1990). 

 

17. S. W. Smye, J. M. Chamberlain, A. J. Fitzgerald, and E. Berry, “The interaction 

between Terahertz radiation and biological tissue”, Phys. Med. Biol. 46, R101-R112 

(2001). 

 

 



 193 

18. M. Brucherseifer, P. Haring Bolivar, H. Klingenberg, and H. Kurz, “Angle-

dependent THz tomography – characterization of thin ceramic oxide films for fuel 

cell applications”, Appl. Phys. B 72, 361-366 (2001). 

 

19. R. A. Cheville and D. Grischkowsky, “Far-infrared terahertz time-domain 

spectroscopy of flames”, Opt. Lett. 20, 1646-1648 (1995). 

 

20. M. C. Nuss, “Chemistry is Right for T-Ray Imaging”, IEEE Circuits Devices 12, 25-

30 (1996). 

 

21. J. O’Hara and D. Grischkowsky, “Quasi-optic terahertz imaging”, Opt. Lett. 26, 

1918-1920 (2001). 

 

22. J. O’Hara and D. Grischkowsky, “Synthetic phased-array terahertz imaging”, Opt. 
Lett. 27, 1070-1072 (2002). 

 

23. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, New York 

1996). 

 

24. E. Hecht, Optics, 4th ed. (Addison Wesley, San Francisco, CA, 2002). 

 

25. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, Cambridge, 

1999). 

 

26. J. J. Stamnes, Waves in Focal Regions (Adam Hilger, Redcliffe Way, Bristol, 1986). 

 

27. A. J. den Dekker and A. van den Bos, “Resolution:  a survey”, J. Opt. Soc. Am. A 14, 

547-557 (1997). 

 

28. N. Katzenellenbogen and D. Grischkowsky, “Efficient generation of 380 fs pulses of 

THz radiation by ultrafast laser excitation of a biased metal-semiconductor 

interface”, Appl. Phys. Lett. 58, 222-224 (1991). 



 194 

 

29. P. G. Huggard, C. J. Shaw, J. A. Cluff, and S. R. Andrews, “Polarization-dependent 

efficiency of photoconducting THz transmitters and receivers”, Appl. Phys. Lett. 72, 

2069-2071 (1998). Ref43 

 

30. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (John Wiley & Sons, 

New York, 1991). 

 

31. R. A. Cheville and D. Grischkowsky, “Time domain terahertz impulse ranging 

studies”, Appl. Phys. Lett. 67, 1960-1962 (1995). 

 

32. R. Mendis and D. Grischkowsky, Personal communication. 

 

33. W. M. Masri, Diffraction-corrected synthetic aperture focusing for spherical 
ultrasonic radiators, (Ph.D. dissertation, Iowa State University, 1997). 

 

34. H. Fizeau, “Prix Bordin:  Rapport sur le concours de l’année 1867”, C. R. Acad. Sci. 
66, 932-934 (1868). 

 

35. A. A. Michelson, “Measurment of Jupiter’s satellites by interference”, Nature 45, 

160-161 (1891). 

 

36. J. D. Kraus, Radio Astronomy, (McGraw-Hill, New York, 1966). 

 

37. M. Ryle and A. Hewish, “The synthesis of large radio telescopes”, Mon. Not. R. 

Astron. Soc. 120, 220-230 (1960). 

 

38. P. J. Napier, A. R. Thompson, and R. D. Ekers, “The Very Large Array:  Design and 

Performance of a Modern Synthesis Radio Telescope”, Proc. IEEE 71, 1295-1322 

(1983). 

 

 



 195 

39. P. J. Napier, D. S. Bagri, B. G. Clark, A. E. E. Rogers, J. D. Romney, A. R. 

Thompson, and R. C. Walker, “The Very Long Baseline Array”, Proc. IEEE 82, 

658-672 (1994). 

 

40. R. A. Monzingo and Thomas W. Miller, Introduction to Adaptive Arrays, (John 

Wiley & Sons, New York, 1980). 

 

41. A. Labeyrie, “Interference fringes obtained on Vega with two optical telescopes”, 

Astrophys. J. 196, L71-L75 (1975). 

 

42. A. R. Haijan and J. T. Armstrong, “A Sharper View of the Stars”, Sci. Am. 284, 56-

63 (2001). 

 

43. A. Broquetas, J. Palau, L. Jofre, and A. Cardama, “Spherical wave near-field 

imaging and radar cross-section measurement”, IEEE Trans. Antennas Propag. 46, 

730-735 (1998). 

 

44. D. Mensa, High Resolution Radar Imaging, (Artech House, Dedham, MA 1981). 

 

45. A. B. Ruffin, J. Decker, L. Sanchez-Palencia, L. Le Hors, J. F. Whitaker, T. B. 

Norris, and J. V. Rudd, “Time reversal and object reconstruction with single-cycle 

pulses”, Opt. Lett. 26, 681-683 (2001). 

 

46. T. D. Dorney, J. L. Johnson, J. Van Rudd, R. G. Baraniuk, W. W. Symes, and D. M. 

Mittleman, “Terahertz reflection imaging using Kirchoff migration”,Opt. Lett. 26, 

1513-1515 (2001). 

 

47. T. Sato, M. Ueda, and S. Fukuda, “Synthetic Aperture Sonar”, J. Acoust. Soc. Am. 

54, 799-802 (1973). 

 

 

 



 196 

48. C. B. Burckhardt, P. A. Grandchamp, and H. Hoffmann, “An Experimental 2 MHz 

Synthetic Aperture Sonar System Intended for Medical Use”, IEEE Trans. Sonics 
and Ultrasonics SU-21, 1-6 (1974). 

 

49. M. Soumekh, Fourier Array Imaging, (Prentice-Hall, Englewood Cliffs, NJ 1994). 

 

50. D. R. Wehner, High Resolution Radar, (Artech House, Norwood, MA 1987). 

 

51. Y. Li and E. Wolf, “Three-dimensional intensity distribution near the focus in 

systems of different Fresnel numbers”, J. Opt. Soc. Am. A 1, 801-808 (1984). 

 

52. Trademark Information, MATLAB is a registered trademark of Mathworks, Inc. 


