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Chapter 1 Introduction 

 

1.1 Introduction of surface wave study 

 

Surface waves, which are also called surface plasma polaritons or surface plasmons, are 

the propagation modes of an electromagnetic wave which is bounded to the interface 

between two mediums. Different terms are used for emphasis on either the quantum or 

wave nature. In this study, because in the THz range the wave property is the main aspect 

of interest, surface waves will be the most appropriate terminology. The surface wave 

propagates along the interface while in the normal direction it has exponential decay on 

both sides of the interface (evanescent waves). To satisfy this condition, the dielectric 

constant of one of the mediums must be negative. Therefore, the surface wave is mostly 

studied on the surface of metal or doped semiconductors. As a solution of Maxwell’s 

equations on the medium boundary, the form and the evanescent properties of the surface 

wave has a great dependency upon the surface morphology and the ambient dielectric 

distribution [2].  

 

The earliest study of surface waves can be traced back to 100 years ago [3]. Since 

Sommerfeld and Zenneck [4] did the groundbreaking work on studying surface waves on 

a cylindrical surface and flat surface, theoretical models have been successfully built to  
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understand surface waves since the early 20th century. However, because of the limited 

availability of experimental techniques in the early days, the experimental study 

developed slowly. Especially the fundamental studies which mainly includes source, 

coupling configuration, propagation property, de-coupling configuration and detection 

are technically difficult in practice. 

 

Technology advances in other fields promoted the research of the surface wave in some 

aspects. The surface wave was first studied in radio frequency range [5, 6]. In the 1960s, 

after the invention of laser, which provided a new type of light wave source, people 

started to study the surface plasmon in the optical range. The development of 

semiconductor devices provided sensors for the detection. The coupling, de-coupling and 

propagation of the surface wave were the first missions for surface wave researchers. To 

couple a freely propagating wave into the surface wave, aperture launching was used first 

[6]. In 1968, Otto proposed the prism coupling/decoupling method based on frustrated 

total internal reflection [7]. Raether discussed the feasibility of utilizing the surface 

roughness for the coupling and decoupling [8]. A lot of progress was made as technology 

further advanced. Especially in recent years, thanks to the major development in 

microchip fabrication and near-field techniques, researchers are able to study 

experimentally and to manipulate the propagation characteristics of surface waves. 

People have used bent, thin film coatings, periodic structures and corrugated surfaces to 

control the coupling, propagating and decoupling process of surface waves [9-11]. 

Numerous investigations have been carried out on the development of new optoelectronic 

devices, based on the evanescent property of surface waves. The potential applications 
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include bio-material analysis and spectroscopy, near-field microscopy, high density 

optical data storage and optical displays. 

 

The propagation of surface waves was also extensively studied in theory; however, the 

experiments are difficult to realize because the direct measurement of the bounded 

(evanescent) field is difficult in practice. Surface waves have great dependency to the 

dielectric constants of the metal and the dielectric on the metal surface. From optical to 

the far infrared and THz range, the frequency dependent metal dielectric constant εm = 

εm’ + i  εm”  undergoes drastic change (see appendix II). The difference in metal 

conductivity and the consequent metal dielectric constant results in the significant 

changes of the surface waves in different frequency ranges.  

 

In optical and near infrared range, according to Drude’s theory, metal conductivity has 

small real part and big imaginary part which makes the metal a lossy medium. As a 

result, surface waves have small spatial evanescent extension in the air δair and in the 

metal δmetal (the distance where the field drops to 1/e of the surface) and short propagation 

length Li (the length at which the intensity drops to 1/e), relative to its wavelength as 

shown in comparison table below. Therefore, once an optical wave is coupled into the 

surface wave, the energy is confined to vicinity of the surface with a relatively short 

propagation length. The tightly bound surface wave field in the optical frequency range is 

difficult to detect directly. Therefore, the traditional way of studying surface wave in 

optical range is first to couple the wave into free space and detect from far field, and then 

to use theoretical method to retrieve or reconstruct the field on surface. For the direct 
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measurement of the field, the near-field scanning optical microscope could be a 

promising technique for the detection of surface fields [12].   

 

On the other hand, in the microwave and THz range, the real part of metal conductivity is 

very high and is equal to its handbook dc value for aluminum, σr = 4 × 107 S/m (the 

corresponding conductivity at optical frequencies at λ = 800 nm, σr = 1.2 ×105 S/m). The 

real part of metal dielectric constant is a negative constant, while the much larger 

imaginary part is proportional to the wavelength. 

 

 

 

The spatial extensions δair and δmetal of the evanescent field and the propagation length Li 

of the surface wave increase when the conductivity increases. Therefore in THz range, 

because metals have high conductivity and behave close to ideal lossless conductor, large 

spatial extension and propagation lengths are expected as shown in the table below. The 

 
0.5 THz (λ=600) 1 THz (λ=300 µm) 375 THz (λ=800 nm) 

δair δmetal Li δair δmetal Li δair δmetal Li 

Al 160 mm 111 nm 137 m 56 mm 78 nm 34 m 1.27 µm 
12.6 

nm 
235 µm 

Ag 189 mm 87 nm 210 m 63 mm 59 nm 53 m 0.68 µm 
23 

nm 
267 µm 

Au 158 mm 107 nm 141 m 54 mm 74 nm 35 m 0.61 µm 
25 

nm 
117 µm 

Table 1-1. Evanescent Field Extent 
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field extends into the air many hundreds of wavelengths. The low loss also enables the 

surface wave to propagate for tens of meters.  

 

However, as the conductivity increases, the surface field extends so far into free space 

that the surface of the conductor has little confinement to the mode of surface wave. In 

fact, as it had been pointed out by many early researchers, in THz and the equivalent far 

infrared, the surface wave is difficult to build up on surface because it is so loosely bound 

to the surface, that coupling and decoupling occurs simultaneously along the long 

propagation length [13]. A solution to this problem is to cover the surface of the 

conductor with a thin layer of dielectric or to corrugate the surface such as using gratings. 

With the enhanced confinement introduced by these structures, the surface 

electromagnetic wave can be established. In 1950, Goubau [14] and Attwood [15] 

predicted the surface wave confinement in dielectric coated cylindrical wire and plane 

surface of perfect conductor, respectively. According to Attwood’s analysis of the coated 

perfect conductor, the field has a trigonometric form inside the film and an exponential 

form outside in the vacuum. In 1953, Barlow and Cullen did an excellent overview of the 

surface wave studies in the early half of 20th century [5, 6]. In their works, surface waves 

at radio frequencies are discussed in detail.  

 

The effect of coating dielectric films and gratings were further studied. In optical range, 

Schlesinger et al experimentally studied the far infrared surface plasmon propagation at 

119 µm on germanium coated gold and lead surface [16]. In 1982, Stegeman analyzed 

Schlesinger’s experiment in theory by assigning the substrate metal a finite value of 
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dielectric constant [17]. More detailed and generalized theoretical study of absorbing 

layers in microwave range have been carried out [18-22]. The grating and corrugation in 

microwave and infrared were also studied [23, 24]. 

 

THz surface wave (TSW) study was only started in recent years. Researchers applied 

techniques in both microwaves and optics to study surface waves. Both the THz 

Sommerfeld and Zenneck waves have been studied experimentally [25, 26]. THz surface 

propagation using lens coupling has been achieved [27]. Extraordinary THz transmission 

through subwavelength hole arrays has been observed and theoretically explained [28, 

29]. The coupling and confinement of TSW using gratings and periodic surface structure 

have been extensively studied, exciting results were obtained [10, 30-33].  

 

 

1.2 Purpose of this study 

 

Success on the studies of THz surface wave (TSW) has shown a promising future for 

THz plasmonic devices. The observed enhanced transmission and other effects are in fact 

due to the interaction between the TSW and the subwavelength metallic structures. 

Therefore, it is important to be able to physically picture the actual surface wave field 

pattern on the metal surface and how it could be manipulated. However, the experimental 

technique to study this fundamental property hasn’t yet been available. The 

characteristics such as absorption and dispersion of surface plasmons in the dielectric 

coating layer on metal surface have been only studied in theory [34]. 
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The THz wavelength has unique advantages in surface wave studies. First, the 

conductivities of many metals are large enough in the THz range so that they can be 

considered as perfect conductors. Consequently, many simplifying approximations can be 

made without losing accuracy. Second, the wavelength in THz range is short enough so 

that most quasi-optical devices (such as mirrors, lenses, fibers…) are available with 

reasonable dimensions for manipulating and guiding of THz beams. Moreover, despite 

the “loosely bound” property of the THz surface wave due to the high metal conductivity, 

because of the short wavelength, the spatial extension of THz surface wave is not more 

than a few centimeters. Thus, a complete picture of the surface wave field decay is much 

easier to measure compared to microwave range. Third, Grischkowsky’s THz antenna 

receiver makes it possible to measure the broad band THz surface wave field in a quasi-

near field scale (λ/12). 

 

In this study, the experimental technique has been successfully developed and 

demonstrated. The surface wave is experimentally studied on a smooth (but not polished) 

metal surface and a dielectric coated metal surface. For both cases, the complete 

transverse field profile and the propagation parameters such as absorption and dispersion 

are measured. The effect of field confinement induced by the dielectric coating is 

demonstrated. The results are favorably compared to the theoretical predictions.  

 

1.3 Scope of this report 

In this report, we present our experimental and theoretical studies of the surface waves on 

both bare and dielectric coated plane metal surfaces.  
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In Chapter 2, the experimental setup is introduced. The standard THz-TDS system was 

modified to directly measure the electrical field distribution near the surface with high 

spatial (25 µm/step) and temporal resolution.  

 

In Chapter 3, the measured time domain signals on bare and dielectric coated metal 

surface are presented. The results are discussed together with the diffraction effect in the 

system. Fourier transforms of the time domain signals are performed to view the surface 

wave field in the frequency domain. The quasi-near field measurements are successfully 

performed.  The observed exponential transverse field decay is in good agreement with 

the theoretical predictions.  

 

Chapter 4 is focused on theoretical study. For the bare metal surface, the 1/e surface wave 

extension distance, also called skin-depth, is derived. For the coated sample, instead of 

using the general electromagnetic wave equation method to analyze the structure [22], we 

took advantage of the feature of the high THz metal conductivity, by assuming the metal 

to be perfect conductor. The problem is then simplified and easy to solve using a well-

established model, which maintained high precision. The accuracy of the assumption was 

verified by comparing our results to the non-simplified solution from literature. The 

dispersion and absorption of the film coating structure are also calculated. The overlap 

integral method is used for the evaluation of the system coupling. The coupling 

coefficients, as well as other system parameters, which are responsible for the reshaping 

of the surface wave pulse, are also calculated and estimated. 
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In the second part of chapter 4, the theoretical predictions are verified by the 

experimental results. The observed surface wave field shows the exponential fall-off 

feature in good agreement with the theory. The input THz reference pulse is used as the 

input for the numerical simulation of the surface wave propagation process. The 

calculated output surface wave pulse shows excellent agreement with the experimental 

measurement. 

 

Chapter 5 and 6 will review the work presented here and draw conclusions about what 

has been learned. Future work will also be discussed. 
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Chapter 2 Experimental Setup 

 

The schematic of the experimental setup is shown as the fig. 2-1 below, which shows the 

complete lay-out of the modified THz-TDS system. Femtosecond laser pulses generated 

by Ti:Sapphire laser are split into two arms: one goes to the transmitter as the pump pulse  

 

 

 

Computer 
controlled 
retroreflector 
delay line  

Beam splitter  

THz receiver  

Laser pulse from      
Ti: sapphire   

M1  

Laser beam goes to transmitter  P
ro

bing
 lase

r be
a

m
 go

e
s 

to
 re

ceive
r  

-- Mirrors, Lens 

Legends 

-- Silicon lens 

M2  

(2) 

∆y 

∆y/2 

Laser Sampling Beam               
(LSB) 

Al sheet block  

PPWG  

(1) 

Laser excitation Beam 
(LEB) 

L3 

L2 

L1 

THz transmitter  

Figure 2-1. 2D schematic of the system setup 
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and the other goes to the receiver as the probe pulse. At the transmitter side, when the 

laser pulses are focused onto the transmitter chip, the THz pulses are generated by the 

transmitter with E field vertically polarized. The generated picosecond THz pulses pass 

through three silicon lenses L1, L2 and L3 and are focused into the entrance slit of the 

parallel plate waveguide (PPWG). The plano-cylindrical lens L3 produces a line focus on 

the input air gap between the two Al plates of the PPWG, thereby coupling the THz 

pulses into the waveguide. The PPWG is the starting part of the surface wave apparatus, 

which is shown in the dashed box 1.  

 

 

Fig. 2-2 shows the detail of the surface wave apparatus. The THz surface wave (TSW) 

propagates on a 24-cm-long by 10-cm-wide by 100-µm-thick sample Al sheet with a bare 

or dielectric-coated surface. As shown in the upper right in fig. 2-2. An extension of the 

M

y 

z 

x 

 

23 

Al blocking plate 

3.5 cm cover Al sheet 

Sample Al sheet 
Cross-section 

Top view 

spacer 

1.2 mm 

Sample Al sheet – Top view 

Figure 2-2. 3D schematic of the surface wave apparatus 
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Al sheet is placed into the PPWG on top of the lower plate of the PPWG to couple the 

THz wave onto the Al sheet. On top of the sample Al sheet, there is another piece of 3.5 

cm long Al sheet with 100 µm separation from the bottom sheet to form the actual 

parallel plate structure. The TSW launching part is the aperture outside the left of the 

PPWG, the two waveguide sheets make a 1.2 mm slowly opening flare aperture structure 

to realize the excitation of the surface wave. This launching configuration is similar to the 

earlier Zenneck wave setup [26], however, the newly added 3.5 cm long flexible cover 

sheet forms an adiabatic flare opening, which provides better bandwidth coupling 

efficiency [35]. 

 
It has been theoretically proven that no surface wave launcher can provide a 100% 

conversion of the incident power into surface wave power [6]. Therefore, along with the 

surface wave, there is always a freely propagating THz wave coming out from the flare. 

To eliminate the effect of this part in the received signals, a 3.5 mm-deep adiabatic curve 

is intentionally made to the Al sheet in order to create a different propagation path for the 

two parts of waves. Then a 10 cm wide Al plate is vertically placed in front of the curve 

with 3 mm opening below the edge of the plate at the downstream of the curved surface. 

The distance from the blocking plate to the end tip of the Al sheet is 8 cm. However, it is 

impossible to completely block the freely propagating wave because diffraction occurs 

when the freely propagating wave is passing through the slit. More detailed discussion 

will be in Chapter 3. 
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The receiver is located at the end of the sheet to detect the linearly polarized TSW field 

that is perpendicular to the sheet surface, as shown in the fig. 2-3. The receiver is 

fabricated on a double side polished silicon-on-sapphire (SOS) wafer so that the laser 

sampling beam can penetrate the sapphire substrate and irradiate the semiconductor 

between the antennas. To enable the direct measurement of the electrical field, the 

receiver is modified from the standard THz-TDS system. There is no silicon lens attached 

to the receiver chip and no second identical large convex silicon lens in front of the 

receiver to focus the incoming THz wave from the L2. Thus the mirror symmetry of the 

system, which is a required condition for 100% energy transfer, is compromised. Without 

the silicon lens in between, the metal antenna side is closely placed to the edge of the 

sheet (distance less than 30 µm) to allow a direct detection of the THz electrical field. As 

shown in dashed box 2 in fig. 2-1, a periscope configuration is used to enable the vertical 

movement of the receiver. The receiver and two optics (M2 and optical lens) are mounted 

on a breadboard so that they can move vertically to measure the TSW field at different 

heights relative to the surface. The movement of the breadboard is controlled by a 

micrometer knob whose minimum measurable distance is 1/1000 inch (≈ 25.4 µm). 
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Two samples are prepared for the study. They are made of two identically sized (24 

cm×10 cm×100 µm) Al sheets. For sample 1 the Al sheet is directly used with its original 

bare surface; for sample 2 the Al sheet surface is coated with 12.5 µm polyethylene film. 

The refractive index of the film is assumed to be constant n = 1.5 in the frequency range 

of interest.  

 

Similar to the standard THz-TDS system, on the receiver side, there is an optical delay 

line made up of a computer controlled motorized retroreflector. The movement of the 

retroreflector can change the laser path length at the receiver side and consequently 

change the timing of the photo-conductive switched receiver. The experiments were 

performed in this way: first, the receiver is moved to a pre-selected position. Then, the 

system starts to take data by controlling the delay line to scan through a long enough 

distance (8 mm ~ 10 mm). Scans are repeated as the receiver is moved to different 

positions. 

Breadboard 
mount 

M1 

M2 
L1 

SOS receiver 

Si side 

Figure 2-3. The optical part of the receiver 



 15

 

During the experiment, the receiver changes its position upward or downward as shown 

in fig. 2-1. The movement of the receiver mount will change the distance between two 

mirrors (M1 and M2) and consequently change the optical path length of the receiver side 

as well. For example, if the receiver is moved upward, the distance between M1 and M2 

will become smaller. Then the total optical path length on the receiver side will be 

smaller. This will make the probe laser pulse arrive the receiver earlier. However, the 

arrival time of the THz surface wave pulse remain unchanged. Therefore, the motorized 

delay line needs to scan further to compensate the shortened optical path and 

consequently the detected signal pulse appears later in time, compared with before 

moving the receiver upward.  Therefore, when studying the arrival timing of the received 

surface wave signal, the path length change induced by the movement of receiver should 

to be considered and compensated. 

 

Scanning range and step sizes 

 

The system allows the maximum receiver scanning from 3 mm below the surface to 22 

mm above the surface. But the scanning range for most experiments and being compared 

as a common range is from 1.65 mm below surface to 1.14 mm above surface, which is 

called a complete set of data. Small step sizes (25 µm and 50 µm) were used in the range 

of -0.5 mm to +0.5 mm from surface, and bigger step sizes (125 µm and 250 µm) were 

used for the other positions. 



 16

Chapter 3 Experimental Results and Discussions 

 

3.1 Individual Signal 

 

The reference THz pulse in fig. 3-1 is taken with the surface wave apparatus out of the 

system. The optical arrangement for the reference pulse is shown in fig. 2-1 and the 

schematic diagram in fig. 3-1.   
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The focal length of the large convex silicon lens L2 is 15 cm and the receiver is located 
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transmitter located at the right focal plane of L2. L2 focuses the THz beam into a 

frequency dependent spot at the left focal plane with beam radius proportional to the 

wavelength. For example, the spot size for 0.5 THz is approximately 20 mm diameter and 

spot size for 1 THz is around 9 mm. Then, the THz beam continues propagating freely 25 

 

cm illuminating the receiver with a much bigger frequency dependent THz beam spot, for 

example, 25 mm for 0.5 THz and 16 mm for 1 THz. As shown in fig. 3-1, both the 

bandwidth and amplitude are smaller than those obtained with the standard THz-TDS 

systems [36].  

 

3.1-1 Signals on bare metal surface 

 

As introduced in Chapter 2, sample 1 is a 24 cm long, 10 cm wide and 100 µm thick, bare 

aluminum sheet; sample 2 is a sheet of the same dimensions, but with a 12.5 µm 

polyethylene film coating. The measurements of samples can be carried out by taking 

multiple scans with different vertical positions of the receiver from below to above the 

surface. Fig. 3-2 (a), (b) and Fig. 3-4 are the THz surface wave signals of sample 1 and 2 

taken at the level of surface. The corresponding amplitude spectra are plotted in the inset.  

 

Fig. 3-2 (a) is taken on sample 1, the bare surface without the blocking plate. From the 

structure of the coupling mechanism, it is obvious that the received signal is a mixture of 

the surface guided wave and the unguided freely propagating wave because the system 

structure allows the collinear propagation of both waves. The coupled and uncoupled 

THz waves come out together from the flare opening of the PPWG. The surface wave 
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coupling occurs during its entire propagation, and the coupled surface wave propagates 

along the adiabatically curved surface. The freely propagating wave comes out from the 

1.2 mm flare opening of the PPWG and radiates into free space the surface as a diffracted 

wave which keeps spreading as it propagates.  
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With the blocking plate with a 3 mm opening perpendicular the surface, as the case of fig. 

3-2 (b), the signal amplitude is greatly reduced. This is believed due to blocking the 
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Figure 3-2. (a) Surface wave pulse on bare metal surface, no block (b) Surface 
wave pulse on bare metal surface with block.  
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majority of the diffracted wave from the flare. However, the reduced signal arrives at the 

same time as the unblocked one. This indicates that the received signal still contains 

wave that comes along the path of the freely propagating waves. This shows that the 

unguided free space waves again “find” their way to overcome the obstacles under the 

help of diffraction and propagate to the receiver. The surface wave in the signal, although 

is weak, can also be identified and will be shown in the later data processing. 

 

On the bare metal surface, diffraction has a significant contribution to the signal. So it is 

necessary to assess diffraction from the waveguide flare and the slit of the blocking plate 

in more detail. To simplify the problem, the metal sheet is assumed to be a straight plane 

with no curvature. When there is no blocking plate, the only diffraction is from the 1.2 

mm wide flare opening of the waveguide, equivalent to single slit diffraction with a 

conducting sheet extending in the propagation direction from one edge of the slit. The 

diffracted wave from the flare opening propagates 20 cm to the receiver without 

disturbance. Because of the Al sheet’s mirror effect, the equivalent diffraction slit width 

should be doubled to 2.4 mm, and the Al sheet is the centered symmetric plane. Here, the 

Fresnel number F = a2/(Lλ), where a is 1.2 mm, the half width of the slit, L = 200 mm is 

the propagation distance and λ is the wavelength. At λ = 600 µm, corresponding to 0.5 

THz, F = 0.012 <<1, so it can be considered to be far field diffraction. The far-field half-

space amplitude diffraction pattern of a single slit is described as a (sinθ)/θ function with 

the central maxima at the metal surface. Assuming the central peak signal amplitude 

taken without blocking plate to be 1, the area defined by the intensity diffraction pattern 

stands for the total power from the 1.2 mm slit.  
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In fig. 3-3, curve 1 shows the power diffraction pattern from the flare opening at the 

receiver plane. When the blocking plate is inserted at 8 cm from the receiver, 

corresponding to 12 cm from the flare opening, the free space waves diffract 12 cm from 

the flare opening and arrive at plane of the 3 mm slit between the plate and metal sheet. 

The slit truncates the diffraction pattern to 3 mm; the transmitted wave from the 3 mm 

aperture diffracts again as it propagates to the receiver. Curve 2 in fig. 3-3 shows the 

diffraction pattern at the blocking plate — it contains the same amount of power as curve 

1. Then the transmitted power through the 3 mm slit (the shadowed area) is diffracted to 

the receiver 8 cm downstream shown as curve 3, whose area is equal to the shadowed 

area. Therefore, according to the calculation conserving the total power, when inserting 

Figure 3-3. The intensity diffraction pattern for 0.5 THz, λ = 600 µm: (1). The 
1.2 mm flare opening without block, (2) the 1.2 mm flare opening at the 
blocking plate, (3) the 3 mm slit of the blocking plate 
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the blocking plate, the peak amplitude at the receiver should change to 1.25 of the 

unblocked signal.  

 

In the actual experimental setup, more processes occur besides the diffraction. The 

surface wave coupling and decoupling occurs along the entire sample surface. The 

adiabatic curve of the sheet interferes with the free space diffraction. The blocking plate 

introduces not only the diffraction but also the decoupling of the surface wave. As a 

result, the experimental data in fig. 3-2 clearly show that the received signal has much 

more reduction when the blocking plate is inserted in the system, than predicted in the 

simple calculation above. 

 

The surface wave launching/coupling efficiency is determined by the overlap integral of 

the excitation field (the diffracted wave field) and the surface wave field [6]. A well-

known fact is that THz surface wave (TSW) is weakly coupled to the bare metal surface 

due to the high metal conductivity, resulting in the TSW exponential fall-off field 

extending transversely from a few tens to hundreds of millimeters above the metal 

surface, as shown in Table 1-1. Therefore at the 1.2 mm flare opening of the PPWG, the 

coupling to surface wave is very low because of the small overlap integral of the two 

field patterns. As the propagation distance increases, the diffracted (sinθ)/θ pattern 

expands whereas the exponential surface wave field pattern remains the same, because it 

is the single mode solution determined by the constant metal conductivity. The coupling 

of the two fields increases at first as the diffracted wave field is expanding closer to the 

extent of the TSW field giving a larger overlap integral. The diffraction field pattern 
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keeps expanding and becomes much larger than the TSW field pattern, then the coupling 

decreases as the two fields are becoming less overlapping. Fig. 3-4 below shows the 

overlap integral at different distances for 0.5 THz. From the figure, 175 cm gives the 

optimal coupling.  
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Fig. 3-5 below shows the transverse intensity and field profile at a few selected distances. 

For λ = 600 µm on an aluminum surface, the TSW field pattern is constant and is shown 

as the dotted line, with 1/e amplitude value of 160 mm. The diffraction patterns at 80 cm, 

175 cm and 500 cm and 5000 cm from the flare opening are plotted as solid lines. At 80 

cm, the two fields are normalized for comparison. At 175 cm, the overlap integral 

between the free space diffraction and the surface wave has the maximum value of 0.825, 

as the two patterns have their most overlapping shapes. Furthermore, for a propagation 

distance of 500 cm and finally at 50 m, the spatial extension of the two waves have 

Figure 3-4. Overlap integral of the surface wave field pattern and the diffraction 
pattern at different distances 
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become so different that they are considered to be well separated and no longer coupled. 

Therefore, in the measurement on sample 1 with only 20 cm propagation distance, the 

signal actually contains only a small portion of surface wave while the majority remains  
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Figure 3-5. Overlapping of the surface wave field pattern (dashed line) and 
the diffraction pattern (solid line). (a) Intensity. (b) Amplitude. 
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as the uncoupled freely propagating wave. The TSW is predicted to propagate 137 m 

before the intensity drops by 1/e. For this distance the 1/e extent of the diffracted wave 

amplitude is 2800 cm, compared to the unchanging extent of the TSW with a 1/e 

amplitude extent of 16 cm. In summary, an optimum long (>1000λ) distance is a desired 

condition for the best coupling of surface waves, however it is impossible to obtain a pure 

surface wave signal since there is no 100% overlap integral throughout the entire surface. 

An important point is that the two waves propagate with the same phase velocity to 1 part 

in 108. Consequently, for λ = 600 µm, the coherence length for energy exchange between 

the two waves is the stunning value of 108
λ = 60 km, which raises the question as to 

whether or not these waves can ever be completely decoupled. 

 

More loss is introduced with the blocking plate in the system. The large spatial extension 

of the THz surface wave results in a large portion of the wave energy getting truncated by 

the blocking plate. Moreover, the 3 mm slit opening of below the blocking plate is 

simultaneously an aperture decoupler which couples the surface wave back into the free 

space.  

 

Although there is predicted radiation loss of the surface wave at the surface bending [11], 

it believed to be an insignificant loss factor in this experiment because not much energy 

is actually coupled into the surface wave. However, the surface bending is responsible for 

the signal reduction because it creates an indirect path for the diffracted wave from the 

PPWG flare opening so that even less energy finally gets its way through the slit. 

Therefore, the measured surface wave after the blocking plate is lower in amplitude.  
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3.1-2 Signals on dielectric coated surface 

 

In the measurement of sample 2, as shown below in fig. 3-6, the presence of the dielectric 

coating greatly compresses the spatial extension of surface wave and consequently 

greatly improves the surface wave coupling. Therefore, the signal is much stronger. The 

dielectric coating confines the surface wave field to within only a few wavelengths from 

the surface so that the wave can pass through the slit and arrive at the receiver. The signal 

of sample 2 also shows that the pulse has been stretched to 25 ps long with a positive 

chirping feature, where high frequencies arrive latter in time. This is also evidence that 

the dielectric film is guiding the wave with dispersion. The relative smooth spectrum of 

the signal shows no sharp low-frequency cut-off or any unusual oscillations, indicating 

single TM0 mode propagation in the dielectric with zero cutoff frequency. 

 

Compared with the reference spectrum, the amplitude spectrum of frequency from 0.5 ~ 

0.7 THz of film-coated surface wave is higher than the reference. The first reason is that 

the free space signal has low transfer efficiency as mentioned at the beginning of this 

chapter. However, the surface wave apparatus has a confocal Si lenses arrangement 

which provides better coupling from the free space into the waveguide system. The 

second reason is the surface waves on the dielectric coated surface propagate in more 

tightly guided mode so that more energy is preserved during the propagation. 
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On the coated surface, diffraction is no longer the dominant effect in the received signals 

compared to the case of bare metal surface. The comparison is made in the fig. 3-7, the 

top curve (a) is the signal taken without block, and the middle curve (b) is taken with the 

blocking plate. It shows when the blocking plate is inserted, no major change happens to 

the signal as it does on the bare metal surface. This indicates that with the improved 

coupling due to the dielectric film, more energy is being carried by the surface wave 

mode and propagates closely along the surface, whereby the blocking plate can have very 

limited influence. The unguided freely propagating part of the wave that can be blocked 

or diffracted can be obtained by subtraction of the curve in (b) from the curve in (a). As 

shown in (c), the freely propagating wave is the small leading part of the signal which 

propagated along the shorter straight line path. 

 

Figure 3-6 THz surface wave pulse on dielectric coated surface with block 
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Figure 3-7. TSW pulse on coated surface without block. (b) TSW pulse on coated 
surface with block (c) The freely propagating wave given by subtraction of TSW 
pulse (b) from TSW pulse (a). Inserts show corresponding spectra 
 

The freely propagating wave 
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3.2 Signals taken above surface 

 

Signals at different heights above the surface are measured by moving the receiver. As 

introduced in the fig. 2-1, the time delay effect of the movement of the receiver has to be 

compensated to indicate the actual arrival time of each signal before presenting the THz 

signals in time domain. For example, in the fig. 3-8 (a), the lower curve was taken at the 

surface and the upper curve was taken 0.60 mm above the surface. From the figure it can 

be seen that there is an apparent time delay between the two signals. As shown in fig. 2-1, 

when the receiver is moved upward by 0.60 mm, then the distance between M1 and M2 

becomes shorter by 0.60 mm, and therefore the optical sampling pulse will arrive the 

receiver 0.60 mm/c = 2.00 ps earlier. However, the arrival timing of the THz pulse signal 

remains the same. Therefore in order to measure the signal, the sampling pulse will need 

to “wait” 2.00 ps longer to be synchronized with the surface measurement and so the time 

delay is created. Therefore, in order to compensate for this time delay, the signal above 

the surface needs to be moved to 2.00 ps earlier in time (to the left) relative to the signal 

on the surface, as shown in fig. 3-8 (b).  

 

The fig. 3-8 (b) shows that after removing the effect of position change of the receiver, 

the peaks in the surface wave pulse at 0.6 mm above the surface are aligned precisely 

with the corresponding ones in the pulse on the surface except for their smaller 

amplitudes. This indicates that the signal above the surface actually arrives at the same 

time as the one on the surface which is expected according to the plane wave mode 

profile, because the entire wavefront propagates with the same velocity. 
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As the receiver moves above the surface, the signal amplitudes of both sample 1 and 

sample 2 decrease. The dielectric film covered sample 2 exhibits stronger confinement of 

Figure 3-8. THz surface wave pulses measured at the surface and at 0.6 mm 
above surface (a) before compensating the time delay caused by receiver 
movement. (b) after compensation 

(a) 

(b) 
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the surface wave than the bare surface and hence results in a faster fall-off of the surface 

wave field.  Fig. 3-9 shows the comparison of signals measured at the surface and above  

0 5 10 15 20 25 30 35 40

-4

-2

0

2

4

6

8

10

12

Delay (ps)

A
ve

ra
ge

 C
ur

re
nt

 (
pA

)
3.4 mm above surface

at surface

 

0 5 10 15 20 25 30 35 40
-20

-15

-10

-5

0

5

10

15

20

25

30

35

Delay (ps)

A
ve

ra
ge

 C
ur

re
nt

 (
pS

)

3 mm above surface

at surface

 

 

 

 

Figure 3-9. Comparison of signals measured at the surface and above surface (a) 
bare surface – sample 1 with block. (b) dielectric coated surface – sample 2 with 
block 

(a) 

(b) 
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the surface. In fig. 3-9 (a), for the bare surface - sample 1, the upper curve is measured at 

3.4 mm above the surface, the amplitude drops 50% of the lower curve at the surface,. 

For sample 2, shown in fig. 3-9 (b), when the Al surface is coated with a 12.5 µm 

dielectric (n = 1.5), the field extension of the surface wave is greatly compressed. At 3 

mm above the dielectric-coated surface, the amplitude drops to 20% of the surface signal. 

 

As the receiver keeps moving, more signals are taken, a clear trend of TSW field fall-off 

is observed. In below fig. 3-10, the time domain signals are plotted according to their 

corresponding receiver positions. It clearly shows a snapshot of the entire surface wave, 

and gives the field fall-off profile above the surface. Because all the time shifts have been 

compensated, in fig. 3-10, the displayed relative positions of the waveforms in time 
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Figure 3-10. The time domain surface waveforms above dielectric-coated 
surface with block. 
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reflect their actual arrival timing. This again shows that the THz surface waves at 

different height above the surface hit the receiver at the same time. It is also worth 

noticing that in the fig. 3-10, the long ringing tail of high frequency components fade 

away, as the wave extends higher into the space. The frequency dependency of the 

fringing field fall-off is again a nature of the guided surface wave, which is better 

presented in frequency domain. 

 

Fourier Transforms are performed on all the above time domain signals so that the 

amplitude spectra of the signals taken at different receiver positions are obtained. By 

putting the spectra together in the order of their corresponding receiver positions, the 

amplitude fall off of the surface wave can be compared in frequency domain. Fig. 3-11 

shows the spectra from surface to 6 mm above the bare metal surface without blocking 

plate.  
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Figure 3-11. Amplitude fall-off viewed in frequency domain  
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Therefore, for each individual frequency, by picking out the amplitude points at all 

positions from the spectra in fig. 3-11, a spatial amplitude fall-off distribution can be 

obtained, as shown in fig. 3-12 
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Because the amplitude has its maximum value at the surface, all the amplitudes are 

usually normalized to the amplitude at the surface to show a clearer comparison. The 

normalized amplitude fall-off curves for each individual frequency from 0.2 to 1.2 THz 

are plotted fig. 3-13 (a) for bare metal without block, (b) for bare metal with block. Fig. 

3-13 (a) and (b) show the experimental results of the frequency dependent field 

distribution on the bare metal surface without and with blocking plate, respectively. Both 

of the two situations show that the detected surface wave field has maximum strength at 

the surface, and then the field decreases with the increase of the distance from the 

surface. The field strength increases when the distance is greater than certain value, 

Figure 3-12. unnormallized frequency dependent field fall off curves: a- bare 
metal surface without block, b- bare metal surface with block 

b a 
THz THz mm mm 
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however for some lower frequencies the increase happens outside of the margin of the 

figure for it takes longer distance. Both the decrease and increase are frequency 

dependent. The field distribution with the blocking plate has poor signal to noise ratio 

which causes the trend less obvious.  

 

As discussed earlier, both surface wave coupling and free space diffraction occur to the 

bare metal surface case. Therefore, the theoretical field distributions of these two effects 

are worked out and plotted. Fig. 3-14 (a) is the surface wave field fall-off on aluminum 

surface. High metal conductivity in THz results in loosely bound surface wave field, 

therefore the fields are hanging far away above the surface and show a slow fall-off 

curve. Fig. 3-14 (c) is the far field diffraction pattern of the waveguide flare opening 

which corresponds to the unblocked case. After diffracting 20 cm away from the flare 

opening, the diffraction pattern is widely spread across the vertical plane and also results 

Figure 3-13. Experimental surface wave fall-off (a) bare surface without 
block. (b) bare surface with block 

mm mm THz THz 
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in almost flat field distribution within 4 mm from the surface. Fig. 3-14 (d) is the 

diffraction pattern of the 3 mm slit of the blocking plate which corresponds to the case 

with block, short distance and wider slit width results in narrower first order diffraction 

peaks, especially at frequency higher than 1 THz, the second order diffraction peaks even 

show up.  

 

The bare metal surface case is a combination of weakly bound surface wave and strong 

free space diffraction, therefore both features of surface wave and diffraction can be 

found in the experimental field patterns. In the case of bare surface without blocking 

plate as shown in fig. 3-13 (a), the field decrease from the surface maximum shows that 

there is coupled surface wave existing in the signal. The field increase at some distance 

from surface is believed to be due to the diffraction. Also, because the wave has long 

propagation length on the surface, the diffracted wave expands closer to the surface wave 

pattern, which is, the surface wave field pattern fig 3-14 (a) has similar distribution as the 

far field diffraction of the flare opening fig. 3-14 (c). Therefore, the condition does allow 

a better surface wave launching which is confirmed in the fig. 3-13 (a). Due to the same 

reason, when blocking plate is inserted, the launching condition is worsen and results in 

lower signal amplitude. The field pattern before normalization below clearly shows the 

change. 

 

Comparing with the theoretical fall-off curve of bare Al surface of fig.3-14 (a), the actual 

field falls much faster than the theoretical prediction. This discrepancy is not surprising 

because it has been observed and reported by many earlier researchers [13, 22, 23, 27, 
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37-40]. T. Jeon of our group had the similar observation [26]. According to the theory, 

surface waves are modeled on ideal flat metal surface. So in experiment, extremely 

optically smooth and flat surface is needed to satisfy the theoretical prediction of large 

spatial field extension. Surface roughness of the sample Al sheet also increases the  
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Figure 3-14. (a)  Theoretical fall off on bare surface. (b)Theoretical fall off 
reduced with a factor of 28. (c) Diffraction pattern from the flare. (d) The 
diffraction of 3 mm slit. 
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confinement to surface plasmon and results in smaller spatial extension and propagation 

length. In the study conducted in ref. 25, the observed field fall-off is 28 times faster than 

the theoretical prediction. Because we are using the same type of Al sheet in this study, in 

fig. 3-14 (b), 28 is used as an empirical factor to re-plot the theoretical fall-off curve. It 

clearly shows a better agreement with the experiment. However, whether the factor is a 

frequency dependent number still remains for further investigation. When the blocking 

plate is in the system, the secondary diffraction in fig 3-14 (d) shows a much under-sized 

field pattern compared to that required by surface wave. Therefore, the coupling doesn’t 

really happen efficiently which results in rather noisy field pattern. 

In fig. 3-15 (a), the “loosely bound” field on bare metal surface has become to “tightly 

bound” field due to the thin layer of dielectric film. As discussed in the introduction, the 

thin film provides strong confinement to the surface wave energy and therefore, its spatial 

extension above the surface is largely reduced in all frequencies. 
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Figure 3-15. (a) Experimental surface wave fall-off on coated surface. 
(b) Theoretical fall off on coated surface 
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Excellent agreement between experiment and exponential field fall-off of dielectric-

coated surface can also be observed in fig. 3-15 (a) and (b). As shown in fig. 3-16, the 

theoretical exponential field fall-off ye α− and experiment field fall-off curves at a few 

selected frequencies are re-plotted. Again, the frequency dependent field fall-off agrees 

reasonably well with the corresponding theoretical fall-off.  
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In summary, with the dielectric film, surface plasmons exhibit a much better guided 

characteristic and more robust to the perturbation such as bending of the surface. The thin 

dielectric coating is proved to be an excellent solution to the enhancement of THz surface 

plasmons which is very important to the further applications of surface plasmons.  

Figure 3-16. Comparison of theoretical and experimental amplitude fall-off at 
selected frequencies 
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Chapter 4 Theoretical Treatment 

 

The objective of the theoretical work is to understand the propagation process of the THz 

pulse on both bare metal surface and dielectric coated surface. For the bare metal surface, 

since the diffraction effect has been discussed in chapter 3, only the calculation of the 

transverse profile of the surface wave field is introduced here. For the dielectric coated 

surface, it includes four parts: 1. The transverse field profile of the propagating mode. 

With the comparison with the experimental results, this process justifies the correctness 

of the simplified theoretical model. 2. The dispersion relation, which accounts for the 

frequency dependent phase delay. This process introduces chirping into the input pulse 

and explains the long lasting ringing feature in the output signal. 3. The absorption. This 

process introduces amplitude attenuation to the input signal.  4. The coupling between 

different elements of the system. The last 3 processes are responsible for the reshaping of 

the output signal. 

 

4.1 The surface wave field on bare metal surface 

 

The surface wave function on metal surface contains a propagation term in the direction z 

along the surface and an exponential decay term in the direction of the surface normal y. 

Therefore, it is described as:  
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Where z axis is the propagation direction along the surface, y axis is the direction of 

surface normal. kz is the wavevector in z direction, which is also known as propagation 

constant, kym is the coefficient of the exponential field fall-off in the medium on either 

side of the surface, here m = 1 stands for the metal and m = 2 stands for the dielectric or 

air. kz and ky can be determined using the metal-dielectric boundary conditions[41] 

 

From the ref 41, given the complex dielectric constants on both side of the interface, the 

wave vectors of the surface wave have the relationships below: 
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Where ε1 = ε1’ + i  ε1”  is the complex dielectric constant of the metal, and ε2 is the 

dielectric constant of the dielectric outside the metal surface, which is air in this case. ω 

is the angular frequency and c is the speed of light. From (4 -2) it can be seen that both kz 

and kym are frequency dependent. Once kym is calculated, the theoretical field fall-off 

curve as fig. 3-13 (a) can be plotted. 

 

Furthermore, the 1/e field fall-off distances (skin depth) on both sides of the interface are: 

(4 - 2) 

(4 - 1) 
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In microwave and THz range, |ε1” | >> | ε1’ | >> ε2, furthermore, the Drude complex 

dielectric constant of metal can be expressed to an excellent approximation as  
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Where σdc is the dc conductivity of the metal, ε0 is the vacuum permittivity and Γ is the 

damping rate. By using all the above approximations, a much simplified expression for 

the above skin depths can be obtained as: 
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4.2 The surface wave field on dielectric coated surface 

 

4.2-1 The transverse field profile 

The dielectric coated metal surface structure is shown in the fig. 4-1 (a). General modal 

analysis to this 3-layer structure is often complicated in theory because of the complex 

(4 - 3) 

(4 - 4) 

(4 - 5) 
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metal conductivity [15, 17, 22]. However, in THz range the problem can be viewed in a 

much simpler way. 

 

In THz range, the real part of the metal conductivity  is high and can be considered to be 

frequency independent constant and to be equal to the handbook dc value (for aluminum, 

σr = 4 × 107 S/m), in contrast to metallic conductivity at optical frequencies, at λ = 800 

nm, σr = 1.2 ×105 S/m [42]. Therefore, as shown in the fig. 4-1 (a), the dielectric coated 

metal surface can be viewed as a classic waveguide structure --- dielectric slab 

waveguide on perfect conductor, also called grounded dielectric film waveguide. To 

solve the wave field in this type of waveguide, the perfect conductor plane can be treated 

as a symmetric plane. Then the problem is equivalent to solving a waveguide that is 

combined by the film and its mirror image, which is actually a free-standing dielectric 

slab waveguide with twice thickness as shown in fig. 4-1 (b). Therefore, the problem 

 

 

 

(a) 

Metal, σ 

Dielectric film ε h βz 
z 

y βz 

2h 

Dielectric film, ε 

(b) 

βz 
z 

y 
βz 

Figure 4-1. Theoretical model equivalence of slab waveguide structure, if the 
conductivity in (a) is infinite, then its field distribution is equivalent to the 
upper half of (b) 
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of the surface wave is simplified to the model analysis of a dielectric slab waveguide. The 

detailed solution of modes and wave vectors is standard and can be found in appendix I.  

 

Both theoretical [2] and experimental work [43] has shown that in our very thin (~λ/20) 

dielectric slab waveguide setup, only the dominant TM0 mode is coupled into the 

waveguide and therefore our surface waveguide structure is working in single mode 

propagation. According to the field solution in Appendix I, the transverse electrical field 

inside the slab has cosine form while the field outside the slab decays exponentially 

(evanescent wave). Therefore, once the transverse field fall-off constant and the wave 

vector are calculated, the problem is then solved. 

 

The left chart in fig. 4-2 shows a typical TM0 mode Ey field solution of a 25 µm dielectric 

slab (n = 1.5) waveguide at 0.5 THz. Inside the film, the Ey field is a small portion of a 

cosine curve which falls off from its apex. At the dielectric-air boundary, the 
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Figure 4-2. left: Ey field TM0 distribution at 0.5 THz of a plastic slab 
waveguide; right: field profile of coated surface. (n =1.5) 
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Ey field has a jump because of the discontinuity of the dielectric constant. Outside the 

film, the Ey field fall-off is the function yyoe α−  where the fall-off constant αyo= 7.64 cm-1.  

As for our case, which is a metal surface overcoated structure with 12.5 µm dielectric 

film, the field profile on the right is half of that of dielectric slab waveguide on the left.  

 

In the dielectric slab structure, electromagnetic fields propagate in the TM0 mode both 

inside and outside the slab with the same wave vector. Therefore, although a perfect 

conductor does not support the surface wave, when it is covered with a thin dielectric 

film, a guided surface wave can be established. Thus, the wave that is propagating on the 

dielectric coated metal surface is in fact the same as the guided mode of the 

corresponding dielectric waveguide. The surface wave here is the same as the evanescent 

field of the guided mode outside the dielectric layer. 

 

As shown in fig. 4-3, the exponential fall-off outside the film is plotted against frequency 

to compare with the experimental measurement shown in fig. 3-15 (b). Because our 

sample film is only 12.5 µm thick, the cosine function inside the film is not detectable.  

 

Our approach of treating metal as a perfect conductor at THz frequencies has greatly 

simplified the problem. Earlier researchers solved the general wave equation of the 
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surface wave on coated metal using the actual frequency dependent metal dielectric 

constant, which must be used for the optical range[22]. The general solutions of 

exponential fall-off decay constants on coated metal are compared to our simplified 

solutions in fig. 4-4. Not surprisingly the two curves almost overlap which proves that the 

perfect-conductor treatment is an accurate assumption in THz, similar to the usual 

approach in microwave theory to derive the modes of metal waveguides. 

 

4.2-2 The dispersion 

 

Using the method described in Appendix I, the frequency dependent wave vector βz(ω) of 

the guided mode can be calculated. Therefore, given the propagation length, the 

frequency dependent phase delay can be calculated.  

 

If the signal at the input end of the film waveguide is described using its electrical field: 

Eref(ω) , then at the output end, the electrical field Eout(ω, z) can be written as [43]: 

 

zzi
refout eeTCEzE z αβωω −−= )(),(  

 

Where ω is the angular frequency, βz is the wave vector of the surface wave mode at ω. 

Both the wave inside the film and outside the film propagates with the same wave vector. 

α is the amplitude attenuation of the waveguide at ω.  T is the transmission coefficient, C 

is the coupling coefficient. 

 

(4 - 6) 
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As discussed previously, the dispersion in signal pulse can be understood in the 

dispersion of the dielectric slab waveguide whose field distribution is frequency 

dependent. Therefore, the fraction of power that propagates inside and outside the 

dielectric slab is also a function of frequency. The fraction of power can be calculated 

using the mode parameter method in Appendix 1. The higher the frequency, the bigger 

fraction of power is held inside the slab. Furthermore, bigger portion of energy inside the 

slab, the closer the propagation speed to the speed of light of bulk dielectric; the less 

portion of energy inside the slab, the closer the propagation speed to the speed of light in 

free space. This explains why in the surface wave signal on dielectric coated surface, the 

lower frequency components travel faster than the higher frequency ones. 

 

Once βz(ω) is obtained, the phase velocity 
z

p β
ω=v , and the group velocity 

z
g d

d
β

ω=v [2]. Fig. 4-5 shows the calculated group velocity and phase velocity as 

functions of frequency. Both group velocity and phase velocity decrease as frequency 

increases, which is in agreement with the experimental results.  

 

With respect to the energy exchange between the TSW and the freely propagating 

diffracted wave traveling at c, the coherence length Lc at 0.5 THz from fig. 4-5 is λ/2 = 

0.0025 Lc, Lc = 200λ, Lc = 120 mm or 12 cm which is ½ our guided wave path, 

consequently the waves can decouple. At 1 THz the coherence length shortens 

considerably to λ/2 = 0.01 Lc, Lc = 50λ = 50 × 0.3 = 15 mm = 1.5 cm. 
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Therefore, when the βz(ω) is obtained, the phase change due to the propagation can be 

calculated as βzL where L is the length of the thin film waveguide which is 20 cm in our 

case. The phase delay as a function of frequency will be applied to the phase term of the 

corresponding frequency of the input signal spectrum. The amplitude term will be 

discussed in the next two sections. 

 

4.2-3 The absorption coefficients 

The absorption α of the thin film over-coating contains two parts: the absorption of the 

dielectric film αg,L  and the absorption of the metal due to its finite conductivity αm.  

mLg ααα += ,  

Figure 4-5. Group velocity and phase velocity ratio to speed of light of the 
fundamental TM0 mode of dielectric slab waveguide with a thickness of 25 
µm and an index of refraction of 1.5 

(4 - 7) 
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1) The dielectric absorption αg,L 

Based on the definitions of model parameters in equation (5) to (8) in appendix I, we 

have V, U, W and ∆ as model parameters. Then using these parameters, in ref [1], the 

fraction of power in the core can be calculated: 
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Fig. 4-6 shows the fraction of power as a function of frequency for our 12.5µm surface 

waveguide structure. 
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The power absorption coefficient due to the dielectric layer is [44]:  

 

Figure 4-6. Fraction of power (η) at different frequencies in our surface 
structure 

(4 - 8) 
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Where αl is the absorption of the bulk dielectric, in our experiment, the dielectric is 

polyethylene, whose absorption is lower than 1 cm-1 [45]. In this calculation we use 

frequency independent value 1 cm-1 as the value of αl. vl is the group velocity of bulk 

material and vg is the mode group velocity within the waveguide layer. We have [1]: 
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(pg 243, table 12-2[1]) 

Figure 4-7. Amplitude absorption due to the dielectric layer 

(4 - 10) 
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Given fraction of power (η) and group velocities, using equation 5, the amplitude 

absorption αg,l/2 due to the dielectric layer can be calculated as a function of frequency, 

as shown in fig. 4-7. 

 

2) The metal absorption αm 

    i) Analytical method 

The Joule heat is generated by the surface current induced by the surface wave mode 

field near the metal. This can be treated using a simple approximation method. The detail 

analytic calculation is described in the Appendix III. The analytic result for the metal 

absorption can be written as:  

 

 

In below figure, the amplitude absorption due to the metal is plotted. 
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    ii) Approximation method: 

To simplify the calculation, the metal absorption can also be approximated using the 

metal absorption of dielectric filled parallel plate waveguide (PPWG). Consider the 

dielectric coated surface wave guide system as a PPWG with top plate removed. Details 

are introduced in appendix III. The obtained approximation is: 

 

nv

v PPWG
m

g

lPPWG
m

SW
m

ηαηαα 5.05.0 ≈=  

This result gives the amplitude attenuation constant (due to the metal) of the surface wave 

as fig. 4-9 shows the curve of SW
mα versus frequency which agrees well with the result of 

the analytical method in fig. 4-8: 

Figure 4-8. Amplitude absorption due to metal αm/2 using analytical method 

(4 - 12) 
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4.2-4 The coupling coefficient 

When THz pulse propagates in the surface wave apparatus, it will go through a number of 

junctions of different waveguide elements, such as cylindrical lens coupling to parallel 

plate waveguide (PPWG) and PPWG to thin film coated surface waveguide. At each 

junction, THz energy is transferred from one element to the other. Since the energy is 

carried by guided modes of the corresponding elements, the coupling at the junctions is 

eventually the coupling of modes between different waveguide elements. 

 

Figure 4-9. Metal amplitude absorption calculated using approximation 
method 
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Two coupling processes are considered here: 1. The coupling between the PPWG and the 

thin film surface waveguide. 2. The coupling at the aluminum sheet block.  

 

The well-known overlap integral is used to calculate the power coupling coefficient 

between two waveguide elements [46].  

∫ ∫
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 Where E1 and E2 are the mode fields of the two waveguides, s denotes the integration 

over the waveguide cross section. Here A is the normalized power coupling coefficient;  

the amplitude coupling coefficient is the square root of A. 

 

1). The coupling between the PPWG and the thin film surface waveguide. 

As fig. 4-10 shows, this process contains two steps: (1) Quasi-TEM mode in the PPWG 

couples into the quasi-TEM mode in the flare, which can be considered as an adiabatic 

structure PPWG. (2) the quasi-TEM mode in the flare couples into the surface TM0 mode 

of the surface waveguide. For region (1), according to the work of J. Zhang and 

Grischkowsky, the coupling can be considered to be unity for adiabatic compression 

shape waveguide [35]. So its coupling coefficient is not calculated. For region (2), the Ey 

field of the quasi-TEM in the flare and the TM0 mode in the thin film surface waveguide 

are shown in (4 - 14) and fig. 4-11: 

 

 

(4 - 13) 
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The detailed definitions of the parameters are listed in the appendix. 
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Figure 4-10. Zoomed drawing of the PPWG-Surface wave junction 
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In PPWG, the E field is perpendicular to the waveguide plates and has the same value 

over the entire cross section. When the bottom plate is covered by a thin film, the E field 

in the space can still be considered to be the same as the film can be treated as 

perturbation. However, the field in the film needs to satisfy the boundary condition, 

namely, the ratio of the E field inside and outside the film should equal to the inverse 

ratio of the dielectric constants. In our case the ratio is 2.25. The calculated normalized 

amplitude coupling coefficient is shown in fig. 4-12. 
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2). The coupling at the aluminum sheet block 

 

 

Figure 4-12. The calculated amplitude coupling coefficient of PPWG – SWG 
junction 
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When the surface wave is propagating along the dielectric coated surface, as discussed 

previously, its field extension into the free space above the surface is frequency 

dependant. Lower frequency component has longer extension. When the wave runs into 

the aluminum sheet block as shown in fig. 2-2 and fig. 4-13, the wave front will be  

 

 

 

 

 

 

 

 

 

 

truncated by the block. Only the part of the wave that is below the slit height (3 mm in 

our experiment) can pass through and re-establish the surface wave. In other words, the 
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Figure 4-13. Schematic of the wave propagation at the slit 
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aluminum block acts as a spatial window filter which can be described using a binary 

function and applied to the overlap integral to calculate the coupling coefficient. The two 

E fields for overlap integral are shown mathematically in (4-15) and graphically below: 

 

 

The calculated amplitude coupling coefficient of the slit is shown in the fig. 4-15. 

Because the thickness of the slit is negligible, it works as a perfect block which maintains 

the part of the wave front that falls onto the slit and completely blocks the rest part that 

falls onto the metal sheet. Therefore, the function for the slit is the same as the input 

wave front in the slit opening area and is zero at rest part. As shown in the right fig. 4-15. 

The product of the above two coupling coefficients gives the parameter C in the equation 

(4 - 6). 
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So far the main mechanisms that are responsible for the signal reshaping have been 

calculated. It includes the absorption of the dielectric material and metal, the dispersion 

in the film and the coupling coefficient at the main junctions. The Fresnel’s transmission 

coefficient of the silicon cylindrical lens is also estimated to be 70%. Other uncalculated 

coefficients are believed to be frequency independent factors and will only have slight 

effect on the pulse magnitude. Therefore, given a free space reference signal, the output 

signal can be theoretically worked out. In fig. 4-16, it shows comparison of theoretical 

output surface wave spectrum and the actual experimental surface wave spectrum. The 

two spectra are normalized to match their peaks for comparison. 

 

Figure 4-15. The calculated amplitude coupling coefficient of the slit 
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The calculated spectrum shows good agreement with the experimental spectrum. From 

the figure, compare with the experimental spectrum (dotted curve), the theoretical one 

(solid curve) has more low frequency component remaining than the experimental one. 

We believe this is because that waveguiding system always works as a high-pass filter, in 

which lower frequency is much easier to get disturbed since it has more energy 

propagates as the fringing field and there are still a few loss factors not yet considered 

due to the system complexity.  

 

Finally, inverse Fourier transform is performed to the calculated spectrum so that the 

theoretical time domain signal can be obtained. In the above figure, the solid theoretical 

time domain curve is compared to the red dotted time domain experimental signal. 

Figure 4-16. The theoretical output spectrum (solid line) and experimental 
output spectrum (dot) on dielectric coated surface 
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Excellent agreement is obtained which shows that the surface wave on dielectric coated 

surface is well understood. 
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Figure 4-17. The comparison of time domain curves between experimental (dot) 
and theoretical (solid line) 
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Chapter 5 Conclusions 

 

The objective of this project is to study the propagation of THz surface waves and the 

field confinement effect of the dielectric coating. During the past one and half years, 

standard THz-TDS system was modified to be capable of measuring the transverse 

electrical field in subwavelength resolution. A good quality thin film coated aluminum 

sample was made and THz surface wave field profile was measured for the first time. The 

experimental results are analyzed in both time domain and frequency domain. Theoretical 

models were built and have excellent agreement with the experimental results. Compared 

with general surface wave model, our approach provides a much simpler way of 

calculation with better physical insight and no loss of accuracy. 

 

In the experimental part, the uniqueness of the THz wave granted the success of this 

study. In microwave and lower radio frequency range, the long wavelength and high 

metal conductivity make it more difficult to bind the surface wave. In the optical range, 

on the other hand, the short wavelength and low metal conductivity make the surface 

wave field difficult to observe. The THz wavelength enables reasonable dimensions of 

sample size and measurement range. Metal still has high conductivity in THz frequency 

so that significant changes in surface wave confinement can be observed. 
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In our study, the THz surface system is modified to make the receiver movable so that the 

surface wave field distribution can successfully measured in subwavelength scale. The 

sample of metal sheet with a tightly attached subwavelength dielectric layer was 

successfully made. Comparing with the bare metal surface measurement, the surface 

wave on the dielectric coated surface is significantly compressed to a few wavelength 

ranges. The THz surface wave field pattern was directly measured for the first time. 

 

In the theoretical part, we developed an improved simple approach for THz surface 

waves on both bare metal surface and dielectric coated surface. In the past, the wave 

equations of surface wave on dielectric coated metal surface have complicated forms 

because the complex metal dielectric constant introduces more complicated boundary 

conditions. With the perfect conductor assumption in THz range, the metal boundary can 

be conceptually removed and the film coating on metal surface becomes equivalent to 

dielectric slab waveguide with twice thickness. The solutions to the latter have relatively 

simple forms which maintain the high accuracy. The theoretical model based on the 

perfect conductor assumption is proved to be correct and much simpler than the general 

equation solving method. Therefore in THz, the complicated dielectric coated metal 

surface can be studied using the classical mode analysis for dielectric slab waveguide.   
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Chapter 6 Future Work 

 

The study has demonstrated the effect of a thin dielectric layer on the THz surface wave. 

The success of this study has opened THz  surface wave research in two ways: 

 

First, dielectric coating has shown extraordinary effectiveness in enhancing the surface 

wave attachment to the metal surface. Precise characterization of the film coating has 

provided the possibility of a new technique in high sensitivity THz surface wave 

spectroscopy. 

 

Second, recent surface wave or surface plasmon studies mostly focus on the transmission 

or reflection property in the surface normal direction in the far field. The experimental 

study presented here demonstrates a new approach of high precision near field study in 

the direction along the surfaces which could offer more fundamental understanding and 

physical insight to the surface wave phenomena. For example, the intensively studied 

transmission enhancing hole arrays can be studied in this system to measure the surface 

wave propagation between the hole arrays. Together with the theory of overlap integral of 

surface waves [29], it can explain the mechanism of the enhanced transmission. 
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Appendixes 

 

Appendix I  Model analysis of dielectric coated surface 

 

In our study, the surface waveguide structure is shown in below fig. A-1(a). h = 12.5 µm, 

εd = 2.25, and the metal underneath is assumed aluminum.  

 

 

 

Method 1 and 2 assume in THz, aluminum is perfect electrical conductor (PEC), σ 

=∞. 

y 

z 

(a) 

Metal, σ, 
εm 

Dielectric film εd h 
x 

Air, ε0 

2h 

Dielectric film, εd 

(b) 

y 

z 
x 

Figure A-1. Equivalent wave guiding structures 
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To solve the wave equations in this structure (a), we refer to the solution in ref.[2], it is 

possible to first solve the wave equations in a free-standing dielectric slab waveguide of 

twice thickness of the same material, as shown in fig. A-1 (b), then apply the boundary 

condition (perfect conductor boundary at the plane of symmetry) to eliminate unsuitable 

modes and select the correct modes for (a) 

Two methods of solving the dielectric slab waveguide are introduced here.  

 

1. Direct wave equation method. [2] 

 

 

 

 

 

The Helmholtz wave equation is used in the dielectric slab waveguide structure. The 

formats of the solution to the Helmholtz equation in slab structure include: TE and TM 

Ey field Ez field 

cos(βydy) sin(βydy) 

exp(-αy0y) 

+h 

-h 

y 

z 

exp(αy0y) 

Figure A-2. Perpendicular (Ey) and tangential field (Ez) of TM0 mode of 
dielectric slab waveguide[2], it should be noted that the TM0-Ez field is 
much smaller ~ 0.05 than the TM0-Ey field 
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modes. In our scope of studying, to couple free space wave into surface, it requires that 

the electric field vector lie within the incidence plane, therefore, only TM field need to be 

considered. Furthermore, because of the symmetry of the structure, the solutions have 

two types of symmetric modes: even and odd. As shown in fig A-2. However, with the 

existence of PEC plane in the center, the only allowed modes are TM even mode which 

satisfies the boundary condition as tangential electrical field to be zero on the PEC plane. 

Below figure shows the E field profile of the fundamental even mode, where the 

tangential field Ez is zero at the plane of symmetry. It will be discussed later that the 

waveguide is running under single mode (TM0) propagation. 

 

The field solution of TM even mode is listed below: 
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Where the superscript d in all field variables refer to fields inside the dielectric and 0+ is 

for fields in vacuum above the dielectric. Am
d and Bm

0+ is field amplitudes which will be 

evaluated at the boundary. βz is the wave vector in propagation direction z. βyd and αyo 

are y components of wave vector inside the film and in the air, respectively. These three 

0 < y <h 
In the film 

 y >h 
In the air 
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parameters are unknown and have to be determined in order to have the complete wave 

field expression. From the above fields inside and outside the film, it can be seen that in 

this structure, only Ey, Ez and Hx field are not zero. In addition, inside the film the fields 

are trigonometric functions and outside the film they are exponential functions. By 

enforcing boundary conditions, the βz, βyd and αyo can be determined by numerically 

solving the simultaneous equations below (Eq. (8-160), (8-167) and (8-168) in ref.[2]): 

 

222
0 )()( ahh ydy =+ βα  

hhh yoydyd
d

αββ
ε
ε

=)tan()(0  

)( 00
22

0
222

0 εµεµωβββα −=−=+ dddydy  

 

Where 100 −= rrha εµεµω  

For TM even mode, the cutoff frequency is  

 

( )
004 εµεµ −

=
dd

mc
h

m
f      where m = 0, 2, 4, ….                 

Substitute h = 25 µm, εd = εrε0 = 2.25 × 8.854 ×10-12 F/m, µd = µ0 = 4π×10-7 H/m, we 

have  

 

fc = m × 2.68 THz 

 

(A-1) 

(A-2) 

(A-3) 

(A-4) 
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Therefore, for the dominant mode TMz
0 (m=0), fc = 0, which means all frequency can 

have unattenuated propagation in this mode. For the second lowest mode (m = 2) is fc = 

5.36 THz, which is higher than the highest frequency of our system. Thus TM0 is the only 

mode that is allowed in our surface waveguide system. 

 

2. Mode parameter method [1] 

 

Another method published in Snyder and Love’s book is a more general method for 

dielectric waveguide with symmetric structures. First it defines some dimensionless 

parameters base on the waveguide refractive index profile and cross-sectional geometry. 

Then, the quantities of interest (such as wave vectors, attenuation constants, group 

velocities, fraction of power in the dielectric and etc.) are worked out as expressions in 

Snyder and Love’s notation. 

 

Given the frequency of electromagnetic wave f, the half thickness of the dielectric 

waveguide ρ (which equals to h in method 1), the refractive index of the dielectric 

(core) nco and the refractive index of surrounding medium (cladding) ncl, we define: 

1. Waveguide and fiber parameter V (Eq. 11-47, pg.227 ref.[1]) 

 

)()(
2 22222/122

clcoclco nnknnV −=−= ρ
λ
πρ

 

Where 
c

f
k

π
λ
π 22

==  

2. Profile height parameter ∆ (Eq. 11-48, pg.227 ref. [1]) 

(A-5) 
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3. Modal parameters Uj and Wj (Eq. 11-49, pg.227 ref. [1]) 
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Where βj is the wave vector both inside and outside of the dielectric, which is the βz in 

method 1, clearly we have (Eq. 11-50, pg.228 ref. [1]) 

                                         2222222 )( VnnkWU clcojj =−=+ ρ                                              

 

For TM modes, it has (Table 12-2, pg.243 ref. [1]) 
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Equation (8) and (9) form up simultaneous equations and can be solved numerically.  

 

Once Uj and Wj are solved, according to the tables on page 242 and 243 in ref. [1], the 

field distribution and other quantities can be calculated accordingly.  

 

Example 

Fig. A-3 is the identical result of applying the above two methods on a silicon slab 

waveguide. In this example, half thickness of the slab (h or ρ) is 65µm, refractive index is 

3.42. 

(A-6) 

(A-7) 

(A-8) 

(A-9) 
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From the figure, it shows the fundamental TM0
z mode. Inside the slab waveguide, E field 

is a cosine function, while in the air, the field is an exponential function. Then for a 65µm 

silicon waveguide on PEC plane, the field distribution is just simply cut the below figure 

into half through the center (0 cm vertical line). 

 

Method 3 treats aluminum as normal metal with complex dielectric constant mε̂  

This method was worked out by Schlesinger and Sievers [22]. In their paper, they tried to 

directly solve the wave equations in the surface waveguide (fig. A-1(a)) with complex 

Figure A-3. Ey field distribution of TM0
z mode in a silicon slab waveguide 

Dielectric slab 
of twice 
thickness 
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metal dielectric constant. The complex wavevector βz is solved numerically, as given in 

below equation 9. Then the exponential decay constant in the perpendicular direction can 

also be calculated using the same relation in equation (3) in method 1.  
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Where zβ̂   is the complex wave vector of surface wave, εd is the dielectric constant of 

overlayer, mε̂ is the complex dielectric constant of substrate metal.  At 1THz, for 

aluminum we have 54 104.6103.3ˆ ×+×−= imε . x in the equation is 2πh/λ. Where λ is the 

wavelength of surface wave, h is the thickness of overlayer and c is the speed of light. 

From this equation, the real part ofzβ̂  corresponds to the βz calculated in method 1 and 2.  

 

Appendix II   Metal conductivity 

According to simple Drude model, the frequency-dependent complex dielectric constant 

is given in SI units as[47].  
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Where the corresponding Drude complex metal conductivity is given by 

(A-10) 

(A-11) 
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)/()/( 2
0 Γ+=Γ+Γ= iiii pdcm ωωεωσσ  

 

In above equations, 0ε  is the vacuum permittivity, ∞ε  is the contribution of the bound 

electrons, ωp is the plasma angular frequency and Γ is the damping rate, which is defined 

as Γ = 1/τ where τ is the average collision time. 

 

In the optical and near infrared range, metal conductivity has small real part and big 

imaginary part which makes the metal lossy medium. 

 

On the other hand, in the microwave and THz range, ω/Γ<<1, as a result, the Drude 

complex conductivity and dielectric constant of metal can be expressed to an excellent 

approximation as  
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Within this accurate approximation, in the THz range, the metal conductivity is equal to 

its handbook dc value which is very high and can be considered as ideal conductor. The 

real part of metal dielectric constant is a negative constant, while the much larger 

imaginary part is proportional to the wavelength. Therefore in the THz range, metals 

have high conductivity and behave like ideal lossless conductor. 

 

(A-12) 

(A-13) 
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Appendix III Metal absorption 

 

1) Analytical method 

 

 

 

 

Due to the uniformity along the x axis as shown in the above structure in fig. A-4, there 

are only 3 field components need to be solved in the Maxwell’s equations: Ey, Hx and Ez. 

According to the (8-62) on ref [2], page 377, the power absorbed and dissipated as heat 

by the metal surface, denoted as Pc is  
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Figure A-4 Surface waveguide structures 
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Where σ is the conductivity of the metal and 
ωµσ

δ
2

≈  is the skin depth of good 

conductor. 

 

The power flow inside the dielectric layer Pz1 is  

 

∫ ×=
∧ h

xyzz dyHEaP
01 ]Re[

2

1
 

 

Similarly, the power flow outside the dielectric layer (in the air) Pz2 is  
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2
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Therefore we have the total power flow P: 

 

21 zz PPP +=  

The metal power absorption αm is defined similar to equation 4- 9,  
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Where vl is the group velocity of bulk material and vg is the mode group velocity within 

the waveguide layer. As the expression of Hx and Ey, are all known, after substituting into 

the above equations, 

η

β

β
β
ωε

σ
ωµ

α ⋅

+

=

h
h

yd

yd

z

dd

m

2

2sin
2

 

Where η is the fraction of power within the dielectric layer, µd = µrµ0 = 4π×10-7 H/m (µr = 

1 for non-ferrites), εd = n2
ε0 =1.52 ×8.854 ×10-12 F/m, for aluminum σ = 4×107 S/m βyd is 

the wave vector in the y direction inside the film and it has: 

 

ddydz εµωββ 222 =+  

 

Equation A-19 can be simplified by making some approximations. For h in µm, we have: 

sin 2βydh ≈ 2βydh 

 βz ≈ β0 = 00εµω  

Substitute the above into 20, the simplified expression of amplitude absorption αm/2 is: 

 

 

 

2) Approximation method 

In a dielectric filled parallel plate waveguide (PPWG), as shown in below fig. A-5(a), 

when studying the metal loss due to the finite conductivity, our surface wave case can be 
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approximated that one of the metal plates has been removed (fig. A-5(b)). Under this 

approximation, the loss due to the finite metal conductivity can be acquired in 3 steps: 

First the loss is reduced to half of the loss of PPWG because there is only one metal plate. 

Second it needs to be multiplied by the fraction of total power within the film because the 

power is flowing both inside and outside the film. Third, the power is no longer 

propagating with the bulk dielectric group velocity (c/n) but approximately with c 

because the majority energy is hanging outside the film. Therefore, the velocity ratio is 

also needed as a correction factor [44]. From fig. 4-2 it shows that although the E field 

inside the film is a cosine function, for such a small thickness h compared to the 

wavelength, the field variation is almost flat. This can be approximated to be uniform, 

which is just the same as the TEM mode in PPWG.  

 

For fig. A-5(a), the metal plate amplitude loss αm for TEM mode propagation can be 

written as [48], attenuation coefficient: 

h
nRPPWG

m
0ηα =  

h 

(b) 

h 

σ n σ σ ε 

(a) 

(amplitude loss) 

Figure A-5. Using parallel plate waveguide to approximate surface waveguide 

(A-23) 
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And the corresponding power attenuation coefficient is twice PPWG
mα . Where n = 1.5 is the 

index of refraction of the dielectric, R = 10.88 ×10-3[107/(σλ0)]
1/2 for TEM mode. h = 

12.5 µm is the thickness of the dielectric, σ = 4×107 S/m for aluminum and 

Ω≈= 377
0

0
0 ε

µη  is the impedance of free space. 

For the surface waveguide, the amplitude loss is ½ that of the PPWG multiplied by the 

fraction of power η (equation (4 - 8)) within the dielectric layer of thickness h and the 

velocity ratio. The approximated metal amplitude attenuation coefficient in surface 

waveguide is:  

nv
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m

g

lPPWG
m

SW
m

ηαηαα 5.05.0 ≈=  

This result gives the amplitude attenuation constant (due to the metal) of the surface wave 

as fig. 4-8 shows the curve of SW
mα versus frequency which agrees well with the result of 

the original analytical method: 
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Scope and Method of Study: The focus of the research was to investigate the propagation 
characteristics (such as field distribution, attenuation and group velocity) of terahertz 
surface waves on bare and dielectric coated metal surface. The experiment was carried 
out on a modified standard terahertz time-domain spectroscopy system. Surface waves 
were coupled into the metal surface using the parallel plate waveguide coupling 
mechanism. The picosecond terahertz pulses were generated and detected using the 
Grischkowsky photo-conductive transmitter and antenna driven by a femtosecond laser.  
 
Findings and Conclusions: Surface waves at microwave and terahertz frequencies are 

weakly guided on bare metal surface due to the high metal conductivity. Detailed 
wave coupling analysis and experiment has shown that on a bare metal surface, 
the majority of energy remains to be uncoupled freely propagating waves. The 
spatial extent of the terahertz surface wave collapses two orders of magnitude 
upon the addition of the sub-wavelength dielectric layer on the metal surface. 
Simple theory in terahertz range gives an accurate explanation to this effect. 
Direct experimental measurements of the terahertz surface wave on an aluminum 
surface covered with a 12.5 µm thick dielectric layer have completely 
characterized the wave. The measurements of the frequency-dependent 
exponential fall-off of the evanescent wave from the surface agree well with 
theory.  

 
 
 
 
 


