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Abstract
This work delineates the mechanism by which directional nanowire growth occurs in the
directed electrochemical nanowire assembly (DENA) technique for growing nanowires on
micro-electrode arrays. Indium, polythiophene, and polypyrrole nanowires are the subjects of
this study. This technique allows the user to specify the growth path without the use of a
mechanical template. Nanowire growth from a user-selected electrode to within ±3 μm of the
straight line path to a second electrode lying within a ∼140◦ angular range and a ∼100 μm
radius of the selected electrode is demonstrated. Theory for one-dimensional electrochemical
diffusion in the inter-electrode region reveals that screening of the applied voltage is
incomplete, allowing a long range voltage component to extend from the biased to the grounded
electrode. Numerical analysis of two-dimensional multi-electrode arrays shows that a linear
ridge of electric field maxima bridges the gap between selected electrodes but decays in all
other directions. The presence of this anisotropic, long range voltage defines the wire growth
path and suppresses the inherent tip splitting tendency of amorphous polymeric materials. This
technology allows polythiophene and polypyrrole to be grown as wires rather than fractal
aggregates or films, establishing DENA as an on-chip approach to both crystalline metallic and
amorphous polymeric nanowire growth.

1. Introduction

Precise nanowire growth techniques are vital to nanoelectron-
ics-development. One seeks control over the wire composition,
dimensions, and growth direction in a single approach. This
has been an elusive goal. Templated growth is in broad-use as
the wire-compositions can be metallic [1], semiconductor, or
polymeric [2, 3]. The wire-shapes are reproducible [4], and
the output is scalable. However, prefabrication of mechanical
growth channels and post-growth release of the wires are
typically required. Methods for circumventing these laborious
steps are, therefore, sought. Dielectrophoretic assembly is a
template-free approach that uses a voltage to chain metallic
or semiconductor particles into wires in the gaps between
electrodes [5–9], but these nanoparticulate materials suffer
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from resistivities several orders of magnitude in excess of bulk
metals [6, 9]. The vapor–liquid–solid (VLS) technique does
not require growth channels and produces single crystalline
wires in high yield [10, 11]. VLS is especially useful for
semiconductor–nanowire assembly. However, this approach
can only fabricate crystalline materials. Conducting polymeric
nanowires are amorphous materials that are needed for basic
transport studies [12, 13] and sensor-applications [14, 15] and
are also promising electrophysiological materials [16, 17].
The wire-lengths that are attainable in most approaches to
polymeric wire growth are limited to 10 μm or less [14, 18].
Dip-pen lithography relaxes the wire-length constraint [19],
but is restricted to applications where the use of a scanning
probe is feasible. In response to the need for precise nanowire
growth techniques, the present work delineates methodology
for the directional growth of both crystalline metallic wires and
amorphous polymeric wires between user-selected sites in on-
chip circuitry. A letter reporting the basic capabilities of this
methodology has been published elsewhere [20].
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The technique of directed electrochemical nanowire
assembly (DENA) permits the template-free, growth of
near single crystalline metallic nanowires from aqueous salt
solutions [21–23]. The wires may be grown from Co, Ni,
Au [22], Ag, Pd, Pt [24], In [21], or Pb. Their diameter is
tunable across the 40 nm–2 μm range [23]. DENA enables the
growth of amorphous polypyrrole or polythiophene nanowires,
as well [20]. The growth path of DENA-fabricated wires
is predictable; it follows the line connecting the tips of a
selected electrode pair across distances as large as 100 μm.
The origin of this control requires elucidation because this
capability enables fabrication of electrode–nanowire–electrode
assemblies—structures that are of use in the characterization
of nanowire-transport properties. For example, we have
used this technique to fabricate assemblies with electrode–
wire contact resistances of only ∼10 � [22]. Small contact
resistances are required before the nanowire-conductivity may
be studied, as the contact properties can overwhelm the
transport properties of the wire [25]. Additionally, we
have used these assemblies to measure the conductivities of
polypyrrole wires (0.5 ± 0.3 S cm−1) and of polythiophene
wires (7.6 ± 0.8 S cm−1) [20]. Finally, the directional growth
capability yields a single-step approach to interconnecting
laboratory instrumentation with biological cells or other
submicron targets to which the wires are grown [20].

The metallic structures produced by DENA range
from needle-shaped wires to highly branched tree-like de-
posits [21–23], two signature-structures of the dendritic solidi-
fication mechanism [26]. Indeed, this diffusion limited process
figures prominently in the DENA technique [27, 28]. Dendritic
solidification pervades alloy crystallization, solidification from
supercooled melts [29] and supersaturated solutions [30], and
electrochemical deposition [31, 32, 23]. It underlies snowflake
formation [33–36] and bears a fundamental similarity to vis-
cous fingering in hydrodynamics due to the isomorphism be-
tween the diffusion and the Navier–Stokes equations [37, 38].
Thus, it is a widely studied and well understood process. The
surface tension anisotropy of the advancing dendrite plays a
key role in this process: the dendrite grows in the direction
normal to its crystallographic plane of maximum surface en-
ergy, and it does so in a shape preserving manner [39]. See the
appendix for a more complete explanation of shape preserving
growth. Dendrites grow in the direction of maximum surface
energy because the particle deposition rate along this vector ex-
ceeds that of any other direction. With no structural anisotropy,
the attachment kinetics is the same at all points of common cur-
vature along the front, so the growth-axis is ill-defined.

In light of these physics, one would expect amorphous
materials to split into multiple tips during their growth, as such
materials lack crystallographic growth-axes. For example, a
2D bubble blown from a central point in a Hele-Shaw cell
grows analogously to diffusion limited growth [40]. The
surface tension of the gas–liquid interface is isotropic, and
the bubble grows isotropically—its circular front splits into
numerous fingers that advance radially outward, but without
any angular preference. Isotropic growth is also observed in
Au atom aggregation on cold surfaces, where the Au surface
energy does not play a significant role. The resulting highly

Figure 1. (a) Apparatus for the DENA technique. The optical
micrograph depicts an In wire grown between the electrode tips. The
scale bar denotes 10 μm. Inset. A scanning electron micrograph of
an In nanowire. The scale bar denotes 250 nm. (b) An optical
micrograph of a DENA-grown polythiophene wire. The scale bar
denotes 10 μm. Inset. A scanning electron micrograph of a
polythiophene nanowire. The scale bar denotes 100 nm.

branched Au aggregates have fractal dimensions of 1.7 [41].
Such structures are not wire-like—they do not grow along
linear paths. Study is warranted, therefore, to elucidate the
curious result that DENA produces wire-like structures from
polypyrrole and polythiophene without the use of mechanical
templates; the growth occurs along predictable and linear inter-
electrode paths [20]. Both of these conducting polymers are
amorphous materials with zero crystalline anisotropy. Their
natural tendency is to grow non-directionally, yielding highly
ramified, filamentous structures. Yet this is not observed.

The present study articulates the role of the applied
electric field in the DENA-based growth of metallic and
polymeric nanowires. This property underlies the directional
character of metallic and polymeric wire growth. It also
underlies DENA’s ability to produce wire-like structures from
amorphous materials. Because screening of the applied voltage
near the solidification front is incomplete, an anisotropic, long
range voltage component survives. This component defines a
ridge of electric field maxima that extends between selected on-
chip electrodes. This electrical ridge defines a growth channel
for the wires that is analogous to the mechanical channels
of templated nanowire growth techniques. Metallic dendrites
crystallize almost exclusively along these channels. The user
thereby controls their growth path in the laboratory frame.
Amorphous materials electrochemically polymerize along this
channel at higher rates than outside of the channel. The channel
thereby constrains the isotropic growth tendency, producing
wire-like structures from amorphous materials.

2. Experimental details

2.1. Indium wire growth

The experimental apparatus for the DENA technique is shown
in figure 1(a), consisting of sharp, transiently biased electrodes
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immersed in concentrated salt solution. This apparatus is
described in detail elsewhere [21]. The optical micrograph in
this figure depicts an indium nanowire spanning the 60 μm gap
between the ends of a tapered electrode pair. The electrodes
were deposited in 12-pair arrays on quartz substrates using
standard lithographic techniques [9] and are composed of
100 nm thick base layers of Ti and 500 nm thick top-layers
of Al. The wire in this micrograph was grown by depositing
a 10 μl aliquot of aqueous 0.055 M In(CH3COO)3 solution
across the electrodes and applying an ±18 V square-wave
with a 1.0 MHz frequency and a 50% duty cycle to the left
electrode while the right electrode was grounded. Growth
does not occur when voltage–amplitudes less than 18 V are
used. A square-waveform is optimal, as sinusoidal or sawtooth
waveforms require larger voltage–amplitudes to induce growth
(>40 V). Presumably, square-waves are more effective because
they apply the full voltage for (nearly) the entire half-period,
whereas sine waves reach their full amplitude for only an
instant during their half-cycle. Duty cycles not equal to
50% result in rapid electrode-dissolution, preventing wire
growth. The frequency of the alternating voltage may be varied
between 0.5 and 3.5 MHz for In wire growth. This degree-
of-freedom provides sensitive control over the growth velocity
and wire-diameter (across the 100 nm–1 μm range) [23].
Electron diffraction was used to identify the wire composition
as indium [21]. The scanning electron micrograph in the
inset depicts a smooth cylindrical wire with a diameter of
106 nm. To collect this image, the wire laden electrode array
was mounted directly in the instrument.

2.2. Polythiophene wire growth

A full description of the DENA-based growth of polymeric
nanowires is published elsewhere [20]. The same set-
up described above for metallic wire growth was used for
the growth of the polythiophene wires in this study. A
typical polymeric electrode–wire–electrode assembly is shown
in figure 1(b). A 10 μl aliquot of aqueous solution
containing 0.01 M ethylenedioxy-thiophene (EDOT) and
0.02 M poly(sodium styrene sulfonate) (PSS) was deposited
across the electrodes. A square-wave voltage-signal (±2.5 V,
100 kHz) was used to induce wire growth across the 30.2 μm
gap in figure 1(b). Growth across gaps as large as 100 μm
is straight-forward. The composition of the polythiophene
wire was verified by micro-Raman spectroscopy [20]. The
inset depicts a scanning electron micrograph of the wire. Its
structure is knobby, varying from 98 to 669 nm in thickness
with a lengthwise averaged diameter of 340 nm.

2.3. Polypyrrole wire growth

Polypyrrole wires were grown on the same electrode arrays.
A 10 μl aliquot of aqueous solution containing 0.50 M
freshly distilled pyrrole and 0.50 M sodium dodecyl sulfate
was deposited across the electrodes. A ±2.5 V, 100 kHz
square-wave voltage-signal was used to induce growth. Micro-
Raman spectroscopy was used to determine the polypyrrole
wire composition [20].

Figure 2. Potential profiles φ(x) for the cases of no screening (solid
line) and full screening (dashed line) of a voltage VApp that is applied
to the left wall of the cell. The right wall is grounded.

3. Theory

The growth path of both the metallic and polymeric wires is
well described by the straight line that connects the tips of
the alternating and grounded electrodes. How does the applied
voltage influence the growth path? Consider the gap between
two parallel electrode-plates. A voltage VApp is applied to
one electrode positioned at x = 0. The other positioned at
x = L is grounded. The solid line in figure 2 denotes the
voltage profile corresponding to a rightward directed uniform
electric field (VApp/L) in the inter-electrode gap. If the medium
between the electrodes is electrolytic, ions near the biased
electrode will respond to the applied voltage by rearranging to
screen the electrode-potential over a short (<10 nm) distance.
This ion-sheath surrounding the electrode is called a Helmholtz
layer and is analogous to Debye–Hückel screening of point
charges in solution [42, 43]. The dashed line in figure 2
illustrates the voltage profile when there is complete screening.
A combination of the processes corresponding to the solid
and dashed profiles of figure 2 must be considered if redox
chemistry and deposition occur at the electrodes, as in DENA.
Below we present a theory for partial screening and relate
this theory to the directional growth and the amorphous wire-
fabrication capabilities of the DENA technique.

We consider the one-dimensional motion of ions in
solution in response to an externally applied electric field.
We assume the body forces on the solution are sufficiently
small that convection is negligible: we need not include
hydrodynamics. We consider continuity equations for each of
the charged species. For simplicity we assume a single positive
and single negative species; the effects of metallic ions that
have dissociated from unbiased electrodes are neglected [42].
The two continuity equations (conservation of species-type)
are

∂t C1 (x, t) = −∇ · �j1 (x, t) (1a)

and
∂t C2 (x, t) = −∇ · �j2 (x, t) . (1b)

Here C1(x, t) and C2(x, t) are the spatially dependent
concentrations of the positive and negative ions, respectively,
and j1(x, t) and j2(x, t) are the local fluxes of these species.
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The fluxes are written in terms of concentration gradients
∇Ci (x, t) and electric forces zi eE(x, t) acting on the species,
where E(x, t) is the electric field and zi is the valence of
species i :

j1 (x, t) = −D1∇C1 (x, t)+ βD1z1eE (x, t)C1 (x, t) (2a)

and

j2 (x, t) = −D2∇C2 (x, t)−βD2z2eE (x, t)C2 (x, t) . (2b)

D1 and D2 are the diffusion constants of the cationic and
anionic species, respectively, and e is 1.602 × 10−19 C, and β
is the inverse thermal energy (kBT )−1 where kB is Boltzmann’s
constant and T is the temperature. The Poisson equation
describes the electric potential φ(x, t) due to net charge at
position x and time t :

∇2φ (x, t) = − e

εε0
[z1C1 (x, t)− z2C2 (x, t)] . (2c)

ε0 is the permittivity of free space (8.854×10−12 C2 N−1 m−2),
and ε is the dielectric constant of water (80). The spatial and
temporal dependences of the quantities ji ,Ci , E , and φ will
be implicit for the remainder of this section. For simplicity, we
consider a monovalent salt, so z1 = z2 = 1 and C10 = C20 =
C0. We further assume that D1 = D2 = D.

Screening will alter the field in the solution with respect
to the prescreening field value of E0 = VApp/L that is present
before charge-reorganization occurs. The concentrations will
change with respect to their bulk values of C0, as well. The
fluxes ji are then fractions α of their initial amplitudes ji0 =
βDeE0C0. After some rearrangement,

D∇C1 − βDe(E0 − ∇φ1)C1 = −α j10 (3a)

and
D∇C2 + βDe(E0 − ∇φ1)C2 = α j10 (3b)

where we used the relationship j10 = − j20. The new
field −∇φ1 accounts for the effect of screening on the initial
electric field E0. The terms in equations (3a) and (3b)
have dimensions of flux (Length−2 Time−1). We rescale the
coordinates to dimensionless form by multiplying through
by factors of |βDeE0C0|−1, the inverse of the initial flux
amplitude, yielding

∇′Y1 − (1 − ∇′ψ)Y1 = −α (4a)

and
∇′Y2 + (1 − ∇′ψ)Y2 = α (4b)

where Y1 = C1/C0, Y2 = C2/C0, and ψ = βeφ1 (all
unitless). The notation ∇′ = d/dx ′ denotes (βeE0)

−1∇
and x ′ = βeE0x . Equation (2c) is non-dimensionalized by
multiplying through by (βeE0)

−2, yielding

∇′2ψ = −γ (Y1 − Y2) (4c)

where γ = C0/(βεε0 E2
0).

Y1 and Y2 are not independent but are coupled through
their dependence on ψ (equation (4c)). To eliminate Y1 and
Y2 in order to solve for the inter-electrode field, we add and
subtract equations (4a) and (4b) to obtain

∇′
− (1 + E1)� = 0 (5a)

and
∇′� − (1 + E1)
 = −2α, (5b)

where 
 = Y1 + Y2, � = Y1 − Y2, and E1 = −∇′ψ . The
Poisson equation becomes

∇′ E1 = γ�. (5c)

Equation (5a) is integrated to give

γ
 = K1 +
(

1 + E1

2

)
E1, (6)

where equation (5c) was invoked. Substitution of this
expression for 
 and equation (5c) for � into equation (5b)
obtains a second order non-linear differential equation for E1.

∇′2 E1 − (1 + E1)

[
K1 +

(
1 + E1

2

)
E1

]
= −2αγ. (7)

If α = 1, there is no screening and E1 = 0; thus, K1 = 2γ .
If α < 1, screening reduces the field in the solution from
its initial value VApp/L. E1 accounts for this change due to
reorganization of charge densities. Let us further resolve this
change by the substitution E1 = E2 + δ which separates the
uniform component of the modifying field δ from the position
dependent component E2. Equation (7) expands to

∇′2 E2 =
[

2γ (1 − α)+ δ + 2γ δ + 3δ2

2
+ δ3

2

]

+ E2

(
1 + 2γ + 3δ + 3δ2

2

)

+ E2
2

(
3

2
+ 3δ

2

)
+ E3

2

3
. (8)

Setting the bracketed term equal to zero, as ∇′2 E2 = 0 if
E2 = 0, determines δ to be δ = α − 1. This quantity is less
than unity, while the parameter γ is of the order of 103 (shown
below). In this limit, equation (8) is approximated as

∇′2 E2
∼= 2γ E2, (9a)

a Debye–Hückel form with the general solution

E2
(
x ′) = A1eρx′ + A2e−ρx′

(9b)

where ρ = (2γ )1/2. We equate A1 to 0 because we expect
x ′(L) to be 1000s of unitless screening lengths in distance,
so E2[x ′(L)] should equal zero. A realistic value for ρ−1 is
computed in section 4.

We seek the total potential VTot(x) at all points in the
solution. To recap, the total field ETot at a given point is
ETot = E0 − ∇φ1, where E is the field in the absence of
screening and −∇φ1 is the field due to the reorganized charge
density. In unitless terms, ETot is expressed as ETot/E0 =
1 − ∇′ψ = 1 + E1 = α + E2. Let ETot = −∇V . Direct
integration yields V = E0(K2ρ

−1e−ρx′ − αx ′ + K3). The
user applies a voltage VApp to the left electrode and grounds
the right, so the boundary conditions for V (x ′) are

V (0) = VApp (10a)

and
V

(
L ′) = 0. (10b)
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Figure 3. The voltage profile in the solution, calculated via
equation (11b). For this plot, VApp = −20 V, α = 0.4 and
(2γ )−1/2 ∼ 30 nm.

K2 is found to be K2 = ρ(Vapp − αL E0)eρL [E0(eρL − 1)]−1,
and K3 is found to be K3 = (αL E0eρL − VApp)/[E0(eρL −
1)]−1. The potential V (x ′) is:

V
(
x ′) =

αVApp
[
eρL + x′

L

(
1 − eρL

)] + (1 − α) VAppeρ(L−x′) − VApp(
eρL − 1

) .

(11a)

We show below that ρ � 1. In this limit where eρL − 1 ∼
eρL , equation (11a) reduces to

V
(
x ′) = αVApp

(
1 − x ′

L

)
+ (1 − α) VAppe−ρx′

. (11b)

This equation indicates that the potential at any point x
is composed of two components, one of initial magnitude
VApp(1 − α) that is screened out across a length scale of ρ−1,
and one of initial magnitude αVApp that decays across the entire
gap. An example of such a partially screened voltage profile
is plotted in figure 3. Depending on the magnitude of α, a
significant fraction of the applied voltage may extend across
the entire gap-length.

4. Results

Figures 1(a) and (b) show that both metallic and polymeric
wires grow along the line bridging the biased and grounded
electrode tips. Consider the indium wire in figure 1(a).
The smooth, near-cylindrical structure of this crystalline-
anisotropic material arises through the shape preserving
dendritic solidification mechanism. The wire also grows along
a predictable vector in the laboratory-reference frame. This
latter behavior has nothing to do with dendritic solidification
but rather the DENA-process. The amorphous polythiophene
wire in figure 1(b) lacks crystalline anisotropy, so dendritic
solidification plays no role in its growth [44]. The wire has
a knobby structure, not smooth like the indium wire. Shape
preserving growth does not occur with amorphous materials.
Nevertheless, the aspect ratio of the polymeric structure is

30.2 μm/0.34 μm = 89, reflecting its wire-like shape on
the macroscopic scale. Like the metallic wire, the polymeric
wire also grows along a predictable vector in the laboratory-
reference frame. We hypothesize that control over the growth
direction of both metallic and crystalline wires as well as
the template-free production of wire-shaped structures from
amorphous materials are due to the anisotropic voltage field
that is supplied by the DENA technique.

The theoretical analysis of section 3 indicates that
partial screening of the applied voltage gives rise to a long
range voltage component that guides the growth of the wire
across the gap to the opposing electrode. To assess the
practical magnitude of this component, equation (11b) must
be evaluated using realistic values for the parameter α, which
sets the magnitudes of the drift and screening terms in
equation (11b). We perform this analysis for indium wire
growth, assuming that growth occurs when the system is in a
steady state: the cationic flux is uniform across the electrode
gap. This assumption is valid when the half-period of the
square-wave voltage-signal is much greater than the build-up
time for the partial Helmholtz layers. Hence, the flux je at the
electrode–electrolyte interface must equal the flux elsewhere in
the solution jDrift that is driven by the field EDrift = αVApp/L.
je describes the deposition that is responsible for wire growth
and is given by the mass conservation boundary condition [23]:

je = v (ρ − cInt) (12)

v is the growth velocity of the wire, and ρ is the (number)
density of the wire-material, and cInt is the ion concentration
on the solution side of the interface. cInt is small compared
to ρ. je is found to be 9.9 × 1011 μm−2 s−1 for an
indium wire grown with an observed growth velocity of v =
26 μm s−1, an applied voltage of VApp = ±20 V, and ρIn =
3.8 × 1010 μm−3 [23]. Invoking the steady-state condition
je = jDrift and the relationship jDrift = βDzeC0 EDrift =
βDzeC0αVApp/L, the parameter α is

α = jeL

βDzeC0VApp
. (13)

α is computed to be 0.75 using the values β = 2.44 ×
108 kg−1 μm−2 s2 C (for T = 300 K), D = 1000 μm2 s−1,
z = 3, L = 60 μm, and C0 = 55 mM = 3.31 × 107 μm−3

(as reported elsewhere [23]). Thus, a voltage equal to 75%
of VApp drops linearly across the gap. The corresponding
parameter (1−α) is 0.25. The dashed curve in figure 4 denotes
the full voltage profile (i.e. equation (11b)) associated with
these parameters. The growth velocity determines the size of
the long range potential. The dotted profile corresponds to a
growth velocity of 13 μm s−1 for which α = 0.4, whereas
the solid line corresponds to a growth velocity of 34 μm s−1

for which α ∼ 1. For realistic experimental parameters, a
significant fraction of VApp is not screened but instead extends
across the entire electrode gap.

It remains to compute a realistic value for the screening
length ρ−1 in equation (9b). This quantity is given by
ρ−1 = (2γ )−1/2 = [2C0 L2/(βεε0V 2

App)]−1/2. Using the
quantities given above, γ ∼ 1.7×103, so the approximation of
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Figure 4. The voltage profiles in the solution, calculated via
equation (11b). The different profiles correspond to different values
of je, which sets the parameter α, with je increasing in the direction
indicated by the arrow.

equation (9a) is justified. Furthermore, ρ−1 ∼ 0.02. This short
screening length (relative to x ′(L) = 780) justifies setting A1

to 0 in equation (9b).
Figures 1(a) and (b) depict wire growth to the only

other conducting object in the system, consistent with the
notion that a long range voltage component defines the growth
path. Observing how the wire grows when there are several
conducting objects to choose from yields a more detailed
description of this behavior: which path does the wire choose?
Figure 5(a) depicts a 16-electrode array, where the spacing
between the tips of the electrodes varies from 20 μm for a
neighboring pair to ∼100 μm for two electrodes on opposite
sides of the array. Indium wires were grown in this study, as
described above. The numbering scheme shown in figure 6(a)
is used to refer to the electrodes. In each of the trials depicted

in figures 5(a)–(f), a different electrode was grounded while the
voltage-signal was applied to electrode 2; nothing was done to
the other 14 electrodes. During growth, the drop of solution
encompassed all of the electrodes. In the situation depicted in
figure 5(a), the wire grew from electrode 2 to 16, even though
electrodes 1 and 3 were closer (to electrode 2); the wire did not
simply grow to the nearest metallic object. Similar behavior
was observed in figures 5(b)–(f). The tip-to-tip distances
for these electrode pairs vary from 41.2 μm for pair 2–16
to 94.3 μm for pair 2–11. With reference to the horizontal
line connecting electrodes 2 and 11, the path-angle varies
from +65◦ for pair 2–16 to −72◦ for pair 2–5, demonstrating
directional control across a 137◦ range. The growth path lies
within ±3 μm of the straight line connecting the selected pair
of electrode tips. Hence, the user may specify the growth path
by selection of the biased and grounded electrodes, as the wire
grows along the line that connects the tips of these electrodes.

We have employed a finite element analysis routine
(FemLab) to calculate the electric potential and the current
density in the inter-electrode region of the 16-electrode array.
Screening is not included; the aim is to characterize the 2D
vector field of electric force components in the inter-electrode
region of this 16-electrode array. The inter-electrode medium
is described by a uniform dielectric constant. Figure 6(d) is
a reproduction of figure 5(d). Figure 6(b) depicts the finite
element analysis-based description of this case: −10 V is
applied to electrode 2, electrode 7 is grounded, and nothing is
done to the remaining 14 electrodes. The equipotential profiles
are shown in color and indicate that the voltage increases
across the gap from −10 V at electrode 2 to 0 V at electrode
7. Near the electrodes, these contours reflect the electrode-
shapes, but in the middle of the gap, the contours are nearly
flat. The electric field at a given point is perpendicular to
the equipotential profile at that point and is directed towards
the negatively biased electrode. These profiles describe a field
vector that extends in a straight line from the tip of electrode 7

Figure 5. A series of nanowires grown between user-selected electrode pairs. The alternating and grounded electrodes are electrodes (a) 2 and
16, (b) 2 and 15, (c) 2 and 11, (d) 2 and 7, (e) 2 and 6, and (f) 2 and 5, respectively, where the electrode numbering scheme of figure 6(a) was
used. The scale bars denote 20 μm.
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Figure 6. (a) Optical micrograph of a wire grown from electrode 2 to electrode 7 (identical to figure 5(d)). The scale bar represents 20 μm.
(b) A numerically calculated map of the electric potential (colored contours) and current density (black contours) on a 16-electrode array
when electrode 2 is biased with −10 V and electrode 7 is grounded.

to the tip of electrode 2. This field drives a current density of
positive charge along this line towards electrode 2, as indicated
by the black equi-current contours. The position of the wire in
figure 6(a) is well described by the predicted pathway.

5. Discussion

The DENA technique harnesses dendritic solidification
to produce wire-shaped metallic structures, but dendritic
solidification alone cannot determine the growth path in the
laboratory-reference frame. The possibility remains that
an electric field defines the inter-electrode path; however,
this cannot occur if there is complete screening of the
applied voltage. To assess the extent of screening in our
electrochemical cells, we have worked out a theory for
the voltage profile in the electrolyte-rich gap. The one-
dimensional diffusive model of section 3 demonstrates that
the unscreened fraction of VApp can be significant: it varies
from 40% to 75% of VApp across the 13–26 μm s−1 growth
velocity range that is commonly attained during indium wire
growth (see figure 4). For the −15.3 V drop that occurs when
the wire grows at 26 μm s−1, the potential to thermal energy
ratio is 3e(15.3 V)/kBT ∼ 1800, so the voltage is sufficient
to overcome thermal motion and transport In3+ ions down the
voltage gradient. This flux is maximized along the tip-to-tip
line, in correspondence with the tip-to-tip growth path that
is observed in figure 1(a). The observed paths in the more
complex, 16-electrode arrays describe straight lines between
the biased and grounded electrode tips. The finite element
analysis-based results for this system indicate that a nearly
linear ridge of electric field maxima extends between these
electrodes. The growth path coincides with this line rather than
along any other direction on the 2D array because the flux of
particles that feeds the growing wire is maximized along this
vector. Indeed, the observed path of figure 6(a) corresponds to
the vector of maximum ion-flux in figure 6(b). We conclude
that controlling the growth-paths of metallic wires requires

incomplete screening and, thus, an anisotropic, long range
component of the applied voltage-signal to extend through the
solution to the targeted electrode.

This anisotropic, long range potential is most crucial to the
growth path control of metallic dendrites during the initiation
of their growth. Metallic dendrites grow in the direction
normal to their high energy-crystallographic plane due to the
dendritic solidification mechanism. It is likely, therefore, that
the anisotropic voltage selects the nucleation seeds with the
correct orientation for long range growth; all others cease to
grow much beyond the seed state and, thus, wires that are not
aligned with the tip-to-tip path are rarely observed. It should
be noted that the electric field determines the growth direction
(in the lab frame), but has little effect on the shape of metallic
nanowires. This is not the case with polymeric wires, however.

Dendritic solidification plays no role in wire growth
from amorphous materials as they lack crystalline anisotropy
and, therefore, tend to grow in arbitrary directions or as
films [40]. How then does DENA produce wire-like shapes
from polymeric materials? Figure 6(b) indicates that a roughly
uniform current density flows from electrode 7 to electrode 2
in the region bounded by the innermost pair of equi-current
contours. This region may be regarded as an electrical channel.
The channel-width determines the precision with which the
wire follows the tip-to-tip line. Within this region, the flux
is nearly uniform and the wire grows isotropically. Figure 7
depicts a transmission electron micrograph of a ∼12μm length
of polypyrrole wire. Its structure is quite knobby. Each knob is
the result of a tip-splitting event (during the growth of the wire)
after which one tip stopped growing while the other continued.
The weaker flux onto one tip slowed its growth relative to
the other that received a stronger flux of particles. Thus, the
knobby character of a wire reflects both the time-averaged
geometry of the channel through which it grows as well as the
instantaneous fluctuations of the ion concentration field along
its solidification front. As a whole, the segment has a large
aspect ratio (∼18) that approximates a wire. The diameter of a
cylinder encompassing all knobs of this wire would be 1.8 μm,
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Figure 7. Transmission electron micrograph of a polypyrrole wire,
that has been deposited on a holey carbon grid (Ted Pella). The scale
bar denotes 2 μm.

suggesting the effective width of this channel. The wire does
not grow appreciably outside of this region because the flux
falls off outside of this region. Thus, the external field breaks
the tendency for isotropic growth by delivering maximal flux
along a single direction—the tip-to-tip line. A similar effect
has been observed in Hele-Shaw cells—the hydrodynamic
analog to diffusion limited growth. An etched line along the
bottom plate of a Hele-Shaw cell was observed to induce rapid
bubble growth predominantly along the scratch, instead of
radially outward without angular preference [37]. The scratch
functions as a mechanical channel. The anisotropic field that
is applied in the DENA technique is analogous to this scratch.
It is also analogous to the mechanical channels that shape and
direct the growth of wires in templated growth approaches, yet
it does not require prefabrication of the channel-matrix.

6. Conclusion

An anisotropic long range component of the applied voltage
extends from the biased to grounded electrode during execution
of the DENA technique. This effect has three benefits
to nanowire growth. It establishes precise control over
the growth path of crystalline metallic nanowires that grow
by the dendritic solidification mechanism. It enables
the electrochemical polymerization of amorphous polymeric
nanowires without the use of mechanical templates. And
as with the metallic wires, it establishes control over the
polymeric wire growth path.

This on-chip wire growth approach provides a convenient
means of characterizing nanowire-transport properties [22].
The range of known DENA-active materials is almost
certainly incomplete, suggesting that DENA will enable
the fabrication of additional types of wires. One
interesting prospect regards the on-chip production biological
nanowires, such as the conductive intercellular filaments
that integrate Shewanella oneidensis colonies [45]. The
transport properties of these bio-wires are poorly understood,
but attaining this knowledge would provide insight into
intercellular electrical communication between single-cellular
organisms. Another direction centers on the electrical or
chemical induction of surface tension anisotropy during the
growth of typically amorphous materials such as conducting

polymers. This step could enable the (dendritic) solidification
of crystalline polymeric interconnects with dramatically
enhanced conductivities.
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Appendix. Shape-preservation in dendritic
solidification

The shape preserving growth that is characteristic of dendrites
in nature requires the dendrite to grow with a steady velocity
and tip radius. A solidification front with a parabolic shape
permits this type of stability, whereas flat and spherical fronts
typically do not [46]. Indeed, the tips of growing dendrites
are observed to be very nearly parabolic. Consider growth
due to particle-transport (as in the present study). The
parabolic front is stable because transport occurs from the
sides as well as the forward direction, so the concentration
field around the front is not depleted. Ivantsov established
that the product vr of the growth velocity v and the tip radius
r of a parabolic dendrite is determined by the experimental
parameter � which sets the driving force (e.g. applied voltage,
undercooling, supersaturation, hydrostatic pressure difference,
or combinations thereof) for the solidification process [47].
This result is known as the Ivantsov relation:

� = pep E1 (p) (A.1)

where, p = rv/(2D) is the Péclet number and E1(p) is the
exponential integral [47, 27, 48–50, 30]. This result permits
a continuum of v and r values for a given � (one equation,
two unknowns). Fixed v and r values are needed for shape
preserving growth. Another relationship is needed before v and
r may be determined, so the Ivantsov picture is an incomplete
description of dendritic solidification [47]. The establishment
of a second vr relationship is termed velocity-selection and
required nearly a half-century of further work [51].

Shape preserving growth is surprising given the expecta-
tion that microscopic deformations of the solidification front
will arise due to, say, spatiotemporal fluctuations in the
number of solidifying particles on the liquid side of the
front. If diffusion to the front were the only important
process, these protrusions would grow at amplified rates
because—by virtue of extending farther into the solution—
the flux onto the protruding tips would be larger than the
flux onto the neighboring depressions (the Mullins–Sekerka
instability) [52]. Thermal fluctuations cause the tips to split,
resulting in highly ramified structures resembling seaweed
or fractal aggregates [41, 53, 32, 31]. The surface tension
(which determines the capillary length d0) of the solid–
liquid interface counteracts the Mullins–Sekerka instability,
so shape preserving growth becomes possible. This factor
induces the dissolution of protrusions with large curvature (and
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large surface-to-volume ratios) in order to minimize the free
energy—the Gibbs–Thompson effect [54]. For a protrusion
of the right length scale λs, the tendency of the Mullins–
Sekerka instability to induce runaway growth is precisely
balanced by the tendency of the Gibbs–Thompson effect to
induce tip-dissolution. In 1978, Langer and Müller-Krumbhaar
hypothesized that the operating point of the dendritic tip occurs
at this marginally stable point [55–57]. The full theory for this
process did not come until nearly a decade later [58, 59, 54].

The surface tension of crystalline materials is anisotropic
because different facets have different structures. The form
of the diffusion equation that accounts for both the capillary
length d0 and its anisotropy ε reduces to an eigenvalue equation
for the parameter σ , which is proportional to the square of the
ratio of the stability length scale λs to the tip radius [39]:

σ =
(
λs

2πr

)2

. (A.2a)

The only solution for σ that is consistent with shape
preserving growth is [58]

σ ∗ = σ0ε
7/4, (A.2b)

where σ0 is roughly unity. If there is no crystalline anisotropy
(ε = 0), shape preserving growth is impossible and dendritic
solidification does not occur. The observed interface has a tip
radius that scales inversely with ε7/4 [58]. Dendrites grow fast
and thin (large ε) or slow and thick (small ε), so the balance
between the area of the high energy-tip and the area of the
lower energy sides is set by ε. The shape of the dendrite is
stable against environmental fluctuations. If r becomes much
greater than λs, protrusions of a size λ where r > λ ∼ λs

will develop along the front. A protrusion centered on the tip
grows fastest due to ε. The Gibbs–Thompson effect dissolves
those on the sides that do not grow as fast. Only the forward
directed lobe of size λ ∼ λs survives. Thus, r is reduced
and the equality between r and λs is restored. If r becomes
smaller than λs, the Gibbs–Thompson effect intensifies at
the high curvature tip, slowing its growth and increasing r .
A shape preserving needle-shaped dendrite results. If the
deformation amplitude is comparable to r , the dendrite will
develop a deformation. Because the material grows fastest
in the direction normal to its high energy surface, these
protrusions are convected downward (becoming side-branches)
and the tip remains stable [46]. A tree-shaped deposit results.
Equations (A.1), (A.2a) and (A.2b) accurately predict unique
values for v and r (two equations, two unknowns) [51], so
equation (2) is called the microscopic solvability condition.
DENA harnesses dendritic solidification to produce near single
crystalline needle-shaped structures from metallic materials
that are useful as current carrying wires [22].
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