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Abstract—Using a unique cylindrical optical arrangement, we have
coupled out a Cherenkov electromagnetic shock wave from the confin-
ing dielectric substrate and have used this shock wave as a source to
produce freely-propagating terahertz beams. The shock wave is ini-
tially generated by a surface-dipole distribution propagating faster than
the phase velocity in the underlying dielectric substrate.

T IS well known that electromagnetic shock waves are

generated when electric charges or charge distributions
travel at speeds greater than the phase velocity in a di-
electric [1]. An important example of this situation has
been discovered by Auston, who created a moving vol-
ume electric dipole distribution by driving the optical rec-
tification effect in a nonlinear dielectric material with an
ultrashort laser pulse [2], [3]. Because the speed in the
dielectric for both the visible light pulse and the volume
dipole was much faster than the phase velocity for the
terahertz frequencies describing the electric field of the
volume dipole, an electromagnetic shock wave was pro-
duced. By measuring the change in time dependence of
the shock wave as a function of propagation distance, far-
infrared spectroscopic measurements of the nonlinear di-
electric were obtained [4]. In addition, measurements of
the change in the time dependence after a reflection at the
surface of the dielectric allowed for measurements of other
materials brought in contact with the dielectric surface [3].

Another experimental approach to the generation of
electromagnetic shock waves is by creating an electric
surface-dipole distribution which propagates faster than
the phase velocity in the underlying dielectric substrate
[6]. [7]. This situation occurs when ultrashort electric
pulses propagate on a coplanar transmission line at speeds
faster than the phase velocity in the underlying dielectric
substrate. Because these electrical pulses propagate as the
differential (TEM) mode of the two-line coplanar trans-
mission line, there is a positive pulse on one line and a
negative pulse of identical shape on the other. Therefore,
the total electric field of the pulse is described by a prop-
agating electrical-dipole distribution. Consequently, as
seen from the underlying dielectric, the situation is that
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of an electric-dipole distribution propagating on the sur-
face faster than the phase velocity in the dielectric. This
situation produces an electromagnetic shock wave. The
initial observation [6] was the measurement of the fre-
quency-dependent loss due to Cerenkov radiation from the
propagating electric pulse. Recent experiments have di-
rectly observed the shock wave and measured its time de-
pendence [7].

The general usefulness of these electromagnetic shock
waves as sources of terahertz pulses would be greatly en-
hanced if they could be coupled out of their confining di-
electrics and spatially reshaped into collimated freely-
propagating beams. In this paper we report the first such
result. Using a unique cylindrical optical arrangement, we
have coupled out a Cherenkov electromagnetic shock
wave from a dielectric substrate and have used this shock
wave as a source to produce freely-propagating terahertz
beams. The observed subpicosecond time dependence is
exceptionally fast and is potentially faster than could be
obtained by the direct generation of terahertz pulses by
driving a Hertzian dipole with ultrashort laser pulses [8]-
[10]. The freely-propagating beams have (10-40 mm) di-
ameters proportional to wavelength but a wavelength-in-
dependent divergence of only 30 mrad [10].

The experimental details of the generation of the elec-
tromagnetic shock wave from an electric pulse propagat-
ing on a coplanar transmission line faster than the phase
velocity of the underlying sapphire substrate has been pre-
sented earlier [6], [7]. For the experiment described in
this paper, the transmission line consisted of two parallel
10 micron wide lines separated from each other by 30 mi-
crons. At the midpoint of this 20 mm long transmission
line a Hertzian dipole antenna structure was imbedded
[10]. This antenna served to excite a significantly larger
electrical pulse on the transmission line than by simply
shorting out the line with the focused laser pulse [10],
[11]. The antenna was driven by photoconductive short-
ing the antenna gap with 70 fs pulses coming at a 100
MHz rate in a 3 mW beam from a colliding-puise, mode-
locked dye laser.

The optical arrangement used to couple out the Cher-
enkov shock wave from the sapphire substrate is illus-
trated in cross section in Fig. 1(a). Here, the location of
the laser excitation beam is indicated together with the
generated electrical pulse on the line shown after several

millimeters of propagation. A section of a crystalline sap-

phire cylinder, fabricated with the optic axis of the sap-
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Fig. 1. (a) Cross-sectional view of the optical system used to couple out
the Cherenkov radiation pulse; fis the focal line of the cylindrical lens.
(b) Terahertz beam system with the Cherenkov source and detector. (c)

Terahertz beam system with the Cherenkov source and standard detector
using a spherical focusing lens.
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phire parallel to the cylindrical axis, is in contact with the
back side (sapphire side) of the silicon-on-sapphire (SOS)
chip. The 5 mm diameter cylinder has been cut so that the
cylindrical axis makes an angle of & = 48° with respect
to the coplanar transmission line. The angle « is related
to the shock wave propagation direction 8. [3] by the re-
lationship o = 90° — ... In addition. the SOS wafer has
the sapphire optic axis oriented so that it is parallel to the
cylindrical axis. Consequently, in the cross section
shown, the ordinary shock wave propagates perpendicular
to the cylindrical axis. From inspection of Fig. 1(a), it
can be seen that at a unique point, the focal line of the
cylindrical lens intersects the transmission line. There-
fore, the shock wave emanating from this point will be
reshaped by the lens into a collimated beam in the plane
normal to the cylindrical axis. For the experiment, the
electrical pulse is generated slightly upstream from this
point to keep a short propagation distance and to thereby
minimize broadening of the electrical pulse. The colli-
mated beam from the cylindrical lens is recollimated by a
paraboloidal mirror with a 4 cm aperture and a 6.6 cm
focal length, as shown in Fig. 1(b). The output face of
the cylindrical lens is located slightly beyond the focus of
the paraboloidal mirror. The collimated beam from the
mirror can now be propagated hundreds of centimeters
with little loss in signal due to diffraction. The beam is
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immediately useful for all the applications previously pro-
posed for terahertz beams [8]-[10]. For the detection
scheme depicted in Fig. 1(b), the beam is refocused by a
second matched paraboloidal mirror onto an identical cy-
lindrical focusing lens in contact with another identical
SOS chip driven by a sampling laser pulse, as described
previously [8]-[10]. Another method of detection is illus-
trated in Fig. 1(c), where a spherical 9.5 mm diameter
silicon lens with a 7 mm focal length is used to focus the
terahertz beam onto the detecting chip [10]. For both Figs.
1(b), and (c) the total terahertz beam path length was 28
cm.

The measured terahertz pulse from the Cherenkov
source with the optical arrangement of Fig. 1(b) is shown
in Fig. 2(a). This high signal-to-noise measurement was
made in a single 2 min scan of the relative time delay
between the excitation and detection pulses. The mea-
sured signal strength of 1.5 mV is of the same magnitude
as obtained with our high-brightness terahertz source (10),
driven with a transient Hertzian dipole. Similarly, the
measured 0.78 ps (FWHM) pulsewidth of the main pulse
compares well with our best result of 0.68 ps from the
Hertzian dipole source (10). The persistent structure
shown after the main pulse is mainly due to the absorption
and dispersion of water vapor in the laboratory air {9]. In
order to better compare the Cherenkov source with the
previously-used Hertzian dipole source, we used a spher-
ical lens to focus the terahertz beam on the detector, as
illustrated in Fig. 1(c). Here we see that the signal strength
is of the same order of magnitude as that of Fig. 2(a). The
measured pulse shown in Fig. 2(b) has a pulsewidth of
0.64 ps (FWHM), significantly shorter than for Fig. 2(a).
Most of this improvement can be attributed to the silicon
lens which has less high-frequency absorption than sap-
phire. It is informative to note that we have tried the three
crystalline materials, sapphire, MgO, and high-resistivity
silicon for terahertz lenses. As noted above, the strong
birefringence of sapphire gives severe technical prob-
lems. In addition, the absorption of sapphire at terahertz
frequencies is higher than MgO and high-resistivity sili-
con. Both MgO and silicon are optically isotropic, and
their index at terahertz frequencies is relatively close to
that of sapphire, thereby giving a small reflection at the
SOS wafer-lens interface. Because the frequency depen-
dence of the index of refraction is much less for silicon
than for MgO, silicon is the preferred lens material. Our
silicon lens was fabricated from high-resistivity (greater
than 10 k@ - cm) float-zone, silicon obtained from Top-
sil. The amplitude absorption coefficient of this material
at | THz is less than 0.2 cm ™', as measured in our labo-
ratory by time-domain spectroscopy with a high-bright-
ness terahertz beam [10], [12].

In important point to make here is that it should be pos-
sible, by using the same approach as described above, to
couple out and convert to a freely-propagating terahertz
beam the conical Cherenkov shock wave generated by op-
tical rectification in a nonlinear dielectric [3], [4]. In lith-
ium tantalate, for example, the angle « is only 22°. The
low anisotropy of both its optical and terahertz dielectric
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Fig. 2. (a) Measured transmitted pulse from the Cherenkov source and de-
tected with the cylindrical sapphire focusing lens. (b) Measured trans-
mitted pulse from the Cherenkov source and detected with the spherical
silicon focusing lens.

constants (0.2 and 0.5 percent, respectively ) makes the
crystal ideally suited for this technique.

In summary, we have demonstrated a new type of
source of freely-propagating terahertz pulses; the source
is not based on the excitation of transient Hertzian dipoles
or antennas.
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