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Abstract: Using terahertz time domain spectroscopy we demonstrate 
tunable polarization rotation and circular dichroism in intrinsically non-
chiral planar terahertz metamaterials without twofold rotational symmetry. 
The observed effect is due to extrinsic chirality arising from the mutual 
orientation of the metamaterial plane and the propagation direction of the 
incident terahertz wave. 
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Since the discovery of light polarization rotation in crystals by Arago in 1811 [1], optical 
activity has been a phenomenon of fundamental importance for the progress of chemistry, 
physics, biology, and optics. Apart from their ability to rotate the polarization state of light 
(circular birefringence), optically active materials also exhibit different transmission levels for 
left and right circular polarizations (circular dichroism) and they can have a negative 
refractive index for circularly polarized waves [2–4]. Since 1848, when optical activity has 
been linked to intrinsically 3D-chiral molecules by Luis Pasteur's pioneering work on tartaric 
acid [5], research in this area focused almost entirely on natural and artificial 3D-chiral 
structures, i.e. three-dimensional (3D) objects such as a helix, which can be distinguished 
from their mirror image. However, optical activity does not require intrinsically chiral 
materials. Instead, optical activity may also arise from extrinsic 3D chirality, when the 
direction of incidence and an achiral material structure form a chiral experimental 
arrangement [6–8], see Fig. 1. 

The terahertz electromagnetic region is a unique frequency range that is scientifically rich 
but technologically underdeveloped. It falls between the domain of high frequency 
radiowaves (microwaves) and the far-infrared with many important applications such as 
security detection, sensing, biomedical imaging, and in understanding the complex dynamics 
in solid state physics and processes such as molecular recognition [9,10]. However, the 
devices for manipulating terahertz waves are considerably limited. Consequently, the 
development of artificially engineered materials with unusual properties in this frequency 
region is especially important. Recently, metamaterials research has greatly expanded the 
accessible range of optical properties at terahertz frequencies [11–28]. However, due to the 
complexity of 3D-chiral metamaterial geometries, experimental realizations of 3D-chiral 
terahertz metamaterials still remain challenging. While current realizations of such structures 
exhibit circular birefringence and circular dichroism [4,29,30], lack of efficient tunability 
limits their suitability for practical applications. 
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Fig. 1. Extrinsic chirality. (a) At normal incidence, the experimental arrangement formed by 
the direction of incidence and a planar metamaterial is the same as its mirror image and 
therefore not 3D-chiral. Here, the angle of incidence α is measured from the metamaterial’s 
surface normal n to the direction of incidence k. (b) At oblique incidence, an achiral planar 
structure and the direction of incidence can form an experimental arrangement that is different 
from its mirror image and therefore extrinsically 3D-chiral. 

Here, we show for the first time that optical activity can occur in non-chiral planar 
terahertz metamaterials. Exceptionally large circular birefringence and circular dichroism are 
observed at oblique incidence, when the non-chiral metamaterial forms an extrinsically 3D-
chiral experimental arrangement with the incident wave. The effect is inherently tunable, its 
sign and magnitude can be controlled by the tilt of the metamaterial plane relative to the 
incident beam. Importantly, this type of tunable optical activity occurs in a large class of 
simple planar metamaterial designs that are ideally suited for well-established planar 
manufacturing technologies, opening up an avenue to polarization control devices for 
terahertz wave applications. 

 
(e) 

160° 

160° 

160° 

160° 

150° 

170° 

150° 

170° 

6 µm 

24 

µm 

60 µm 

(a) (c) 

(b) (d) 

 

Fig. 2. Fabricated planar metamaterial samples represented by their unit cells:  
(a) symmetrically and (b) asymmetrically split wire rings and the complementary  
(c) symmetrically and (d) asymmetrically split ring apertures with structural dimensions.  
(e) Fragment of the metamaterial array of asymmetrically split wire rings. 

Four different planar metamaterials were fabricated by conventional photolithography 
from a 200 nm aluminum layer on a 640 µm thick silicon substrate (n-type resistivity  
12 Ω cm). The metamaterials all have lateral dimensions of 10 x 10 mm

2
 and a lattice constant 

of P = 60 µm, which renders the structures non-diffracting at any angle of incidence for 
frequencies up to 2.5 THz. As illustrated by Figs. 2(a)–2(d), the meta-molecules consist of 
symmetrically and asymmetrically split wire rings (positive metamaterials) and the 
complementary symmetrically and asymmetrically split ring apertures in an aluminum film 
(negative metamaterials), respectively. Detailed dimensions are given in Fig. 2. 

We studied these structures using terahertz time-domain spectroscopy THz-TDS [31]. The 
terahertz beam incident on the sample had a frequency-independent diameter of 3.5 mm and 
thus illuminated about 3000 unit cells at the center of the metamaterial. Transmission of the 
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structures was studied for angles of incidence in the range from α = −45° to + 45°, where the 
plane of incidence was parallel to the splitting in all cases. Using parallel or crossed linear 
polarizers placed before and after the sample, we measured all components of the 

metamaterial's transmission matrix ,
trans inc

i ij j
E Eτ=  which relates the incident and transmitted 

electric fields in terms of linearly polarized components. Amplitude 

( ) ( ) / ( )
sample ref

ij ijE Eτ ω ω ω=  and phase arg( ( )) ( ) / ( )
sample ref

ij ijE Eτ ω ω ω = ∠    of the 

transmission matrix elements were calculated from transmission measurements taken on the 

metamaterial ( )
sample

ij
E ω  with a correspondingly oriented blank silicon substrate ( )refE ω  used 

as reference. The insertion loss of the silicon substrate is about −3 dB. In order to analyze the 
metamaterial response for circularly polarized waves, we transformed the transmission matrix 
τij from the linear polarization basis to circular polarization, 

 
( ) ( )1

.
( ) ( )2

xx yy xy yx xx yy xy yx

xx yy xy yx xx yy xy yx

i it t
t

i it t

τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ
++ +−

−+ −−

+ + − − − +  
= =    − + + + − −   

  (1) 

In this form the transmission matrix 
trans inc

i ij j
E t E=  directly relates the incident and 

transmitted terahertz electric fields in terms of right-handed ( + ) and left-handed (-) circularly 

polarized components. The square of its elements 
2

ij ijT t=  corresponds to transmission and 

circular polarization conversion in terms of power. 
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Fig. 3. Measured circular transmission and polarization conversion for terahertz waves incident 
at α =  + 45° on metamaterial arrays of (a) symmetrically split wire rings, (b) asymmetrically 
split wire rings, (c) symmetrically split ring apertures, and (d) asymmetrically split ring 
apertures. The dashed lines mark the frequency band of pure polarization rotation, where 
circular dichroism and linear birefringence / dichroism are virtually absent. 

Figure 3 shows measurements of direct transmission and circular polarization conversion 
taken for an angle of incidence of α = 45°. It can be clearly seen, that within experimental 
accuracy the circular polarization conversion efficiencies are identical for each metamaterial, 
T-+ = T+-, indicating the expected presence of linear dichroism/birefringence in the anisotropic 
structures and absence of the recently-discovered 2D-chiral asymmetric transmission 
phenomenon [27,32]. More importantly, the direct transmission levels, T++ and T–, were found 
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to be equal for the symmetric metamaterials and unequal in case of the asymmetric structures, 
indicating the presence of 3D-chiral circular dichroism, ∆ = T++ - T–, only for the asymmetric 
metamaterials. The importance of the asymmetric splitting becomes clear when considering 
(i) the experimental arrangement consisting of the metamaterial and the direction of incidence 
and (ii) its mirror image, see Fig. 1(b). For asymmetrically split rings, these mirror-
experiments cannot be superimposed: If we rotate one experiment to superimpose the wave 
vectors k and the surface normals n, then the metamaterial orientations will differ by a 180° 
rotation around n (one structure is up-side-down). Therefore the experimental arrangement is 
different from its mirror image, extrinsic 3D chirality is present and optical activity is 
allowed. In case of symmetrically split rings - and indeed for any twofold rotationally 
symmetric planar metamaterial - the experiment is not chiral, as it can be superimposed with 
its mirror image and therefore optical activity must be absent. 
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Fig. 4. Optical activity due to extrinsic 3D chirality. Polarization azimuth rotation (circular 
birefringence) and circular dichroism observed in metamaterial arrays of asymmetrically split 
(a) wire rings and (b) ring apertures at different angles of incidence α. 

The manifestations of extrinsic 3D chirality are further illustrated by Fig. 4, which shows 

the dependence of polarization rotation, 
3 1

[arg( ) arg( )],
2

D
t t++ −−∆Φ = − −  and circular 

dichroism ∆ on the angle of incidence α for the asymmetric metamaterials. At normal 
incidence extrinsic chirality is absent and no optical activity can be observed. When the angle 
of incidence is increased, a band of gradually increasing optical activity appears around 
0.9THz, where opposite angles of incidence ± α lead to optical activity of opposite sign. Thus, 

circular dichroism can be tuned continuously from ∆ = −31% to + 31%, simply by tilting the 
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array of asymmetrically split wire rings from α =  + 45° to −45°. Similarly, using the 
metamaterial array of asymmetrically split ring apertures, polarization rotation can be tuned 

continuously from ∆Φ
t
 = −28° to + 28°. In case of the asymmetric aperture array, it is 

particularly useful, that the maximum of circular birefringence coincides with absence of 
circular dichroism and negligible linear dichroism/birefringence [T-+, T+-, see Fig. 3(d)]. Thus, 
at the maximum of polarization rotation, the metamaterial exhibits pure circular birefringence 
and behaves like an ideal tunable polarization rotator. This behavior is opposite to the effect 
seen in most optically active molecular systems, where characteristically strong resonant 
polarization rotation of initially linearly polarized radiation is accompanied by substantial 
circular dichroism resulting in an elliptical polarization state. 

Comparing the optical activity for both asymmetric split ring metamaterials, we find that 
the aperture array shows about 3.5 times larger polarization rotation, see Fig. 4(b). On the 
other hand, circular dichroism is about 3.5 times larger for the wire structure, see Fig. 4(a). 
Overall, the spectral and angular dependence of polarization rotation and circular dichroism, 
each, is similar, but of reversed sign, for the positive and negative metamaterial structures. 

Neglecting the presence of the substrate, the positive and negative metamaterials are 
complementary structures in the sense of Babinet's principle [33–35]. Babinet complementary 
planar metamaterials exhibit interchanged optical activity in transmission and reflection [36]. 
Thus it may be expected that both arrays of asymmetrically split rings exhibit substantial 
polarization rotation and circular dichroism also for reflected waves. 

Similarly to optical activity in conventional 3D-chiral molecules, optical activity due to 
extrinsic 3D chirality has been linked to electric and magnetic responses of the meta-
molecules [6]. In a wire split ring, which essentially consists of a pair of electric dipole 
antennas, in-phase current oscillations correspond to an electric dipole oscillating in the 
metamaterial plane. On the other hand, the asymmetric splitting also allows the currents in 
both wires to oscillate in anti-phase, giving rise to a magnetic dipole oscillating perpendicular 
to the metamaterial plane. Only the magnetic dipole component perpendicular to the 
propagation direction can contribute to the scattered field and this radiating magnetic 
component is zero at normal incidence and has opposite signs for opposite angles of 
incidence. Therefore optical activity can only be observed at oblique incidence onto the 
asymmetrically split ring arrays and reverses sign for opposite angles of incidence. 

In summary, we demonstrate strong and tunable resonant polarization rotation and circular 
dichroism in achiral planar terahertz metamaterials. The effects are due to extrinsic 3D 
chirality arising from the mutual orientation of a metamaterial lacking twofold rotational 
symmetry and the incident terahertz beam. Due to (i) the large magnitude of the observed 
optical activity, (ii) the huge tunable range of the effect and (iii) the simplicity of suitable 
planar metamaterials, such structures are ideal functional elements for novel, highly efficient 
terahertz polarization rotators, circular polarizers, modulators and vibration sensors. 
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