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We present a complete frequency-domain description of electro-optic (EO) detection of terahertz (THz) electro-
magnetic radiation, including a description of the ellipsometry technique employed. These frequency-domain
results show the effect of EO detection of a pulse of THz radiation as the product of three spectral filters acting
on the complex amplitude spectrum of the THz pulse that is entering the EO crystal. For the usual experi-
mental situation in which the optical bandwidth of the interrogating light pulse is small compared with the
optical carrier frequency, we obtain an important simplification of our general result for the detected EO sig-
nal. When this simplified result is rewritten in the time domain, a more general description of the previous
time-domain picture of EQ detection is obtained. © 1999 Optical Society of America [S0740-3224(99)00308-2]

OCIS codes: 040.1880, 120.2130; 250.0250, 070.2580.

1. INTRODUCTION

The application of optoelectronic techniques to the gen-
eration and detection of terahertz (THz) electromagnetic
radiation is now well established. These techniques have
facilitated the widely practiced method of THz time-
domain spectroscopy (THz TDS),! demonstrations of THz
imaging,%® and THz ranging.* THz TDS and THz rang-
ing applications have usually used a photoconductive an-
tenna for the THz receiver. THz imaging applications
have used both - photoconductive’? and electro-optic
detection.® Although electro-optic (EO) THz receivers
have demonstrated exceptionally high-frequency
performance,’® they have not demonstrated the continuous
spectral coverage of photoconductive receivers. This is so
because of strong THz absorption and dispersion of the
EO crystal, phase mismatch between the interrogating
light pulse and the propagating THz pulse, and strong
frequency dependence of the EO susceptibility. The com-
parison of photoconductive receivers with EO receivers is
of significant interest, and experimental comparisons
have been performed.®”

Associated with these optoelectronic THz applications,
it has become important to have a comprehensive under-
standing of the entire process of EO detection of THz ra-
diation. Such understanding will permit a more mean-
ingful comparison of the photoconductive and EO
receivers and will elucidate the applicability of THz TDS
with EO detection. Here we present a complete
frequency-domain description of EO detection, including a
description of the ellipsometry technique employed.
These results, expressed as an easily evaluated Fourier
integral, clearly show that the usual procedures of THz
TDS are applicable independently of any time-domain
distortion of the actual EO signal compared with the THz
pulse.

For the usual experimental situation described by the
slowly varying envelope approximation,8 in which the op-
tical bandwidth of the probing light pulse is small com-
pared with the optical carrier frequency, we obtain an im-
portant simplification of our general result for the
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detected EO signal, expressed as a simple Fourier inte-
gral. When this simplified integral is rewritten in the
time domain, we obtain a more general description of the
intuitive time-domain picture that was introduced by
Bakker et al.? Restricting our result to the frequency-
independent EO susceptibility situation considered by
Bakker ef al.,? we identically obtain their intuitive pic-
ture, in which the EO signal is given by a cross correla- .
tion between the interrogating optical pulse traveling at
the optical group velocity and the propagating THz pulse
integrated over the EO crystal length.

2. SUM- AND DIFFERENCE-FREQUENCY
MIXING i

As we show below, EO detection of THz radiation is based
on the measurement of the phase modulation induced on
the interrogating light pulse by the THz pulse as both
pulses mutually propagate through the EO crystal. This
phase modulation is more precisely understood as the
generation of phase-coherent sidebands on the spectrum
of the optical pulse, through the generation of sum- and
difference-frequency components. :

We now discuss the generation of these sum- and.
difference-frequency components in the EO crystal as a
result of the interaction between the propagating light
pulse and the propagating THz pulse. The notation and
theoretical presentation follows that of Shen?® as closely as
possible.

The fields that we consider are defined as follows:

Terahertz field E\(z', ;) = E(2', w1)8;, 1)

Ei(z', oy) = Aq(2', w;)
X explik(w1)z']

X exp( - wlt))

+eo
EI(ZI B wl)dwl .

El(z"7 t) = f

2
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Optical beam  Eg(z', wg) = Eqo(z', wg)ly, (3)
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Ey(2', wg) = Ag(2’, wg — wg)exp[ike(wy)z'Jexp[ —i(wy — wg)t],

~+o0

EZ(Z,’ t) = f

—
4

Sum-frequency field E3(z', w3) = E3(z’, w3)it;, (5)

E2(Z’, Wy "r‘wo)dwz. (4)

E3(z', wg) = Ag(z', w3 — wo)explikg(wg)z’Jexp[ —i(ws — wp)t],

+00
—00

E3(zl’t) = f

Difference-frequency field E (2', wg) = Ey(2', 0y)ii;,

E3(2’', w3 — w)dws.

6

)]

Ey(z', 0g) = Ay(2', 04 = wp)exp[iky(wy)z" Jexp[—i(w, — w)t],

00

E4(z” t) = f

-0

The specific notation used is the following:
Sum frequency
Difference frequency

w3 = wy + oy,
Wy = Wy — Wy,

Subscripts i, j, and k refer to the generalized crystallo-
graphic axes of the crystal x', y', and z’, respectively.
wy is the optical carrier frequency. With absorption, the
wave vectors become complex; then

k=P +ip,

where B is the attenuation coefficient.

Electro-Optic Polarization The polarization gener-
ated at sum frequency wg at position z by the field ampli-
tudes E;(w;) and E,(w3) as a result of the nonlinear sus-
ceptibility of the EO crystal is given by

9)

PP (wg) = p@ expli(ky + ko)z' ~ iwstli,

= X (w3)E1(w1)Eq(w5)d 4 ,

where p‘? designates the polarization amplitude. Simi-

larly, we obtain for the difference frequency

Eyz', 0y — wp)day.

8

(10)

d
[3—, + ﬁs(wa)}Aa(Z', w3 = wg)
-

2

=i M:Tx)p@ expliAkLz’ — [By(wy) + ﬂzmm(z';
1

J
gz’
27wl

p—t i——
Czk;(w‘;)

27w

+ B4(w4)}A4(z’, w4 — wp)

pP expliAk 2’ — [Bi(wy) + Ba(wy)]z'},
(13)

where the phase-matching conditions are determined by
the real part of k:

Ak = —kg(wg + 01) + ki(w)) + kj(wy), (14)
AR = —ky(wy — w1) — kj(w;) + kj(wy).  (15)
Solution of Eq. (12) for an EO crystal of length [ yields

2
2wy

2 EXPUARLL — [Bi(@1) + Ba(wp)]l} — exp[~Bs(ws)l]

Ag(l, wg — wg) =i

czké(ﬁ’s)p

* IAR, — [B1(w1) + Bo(wg) — Bs(ws)]

P®(w,) = pPexpli(~ky + kp)z' — iwgt]d._

= X R(0)EF (01)Es(w)i_, an

where 2, and 4 _ are generalized unit vectors that repre-
sent any one of &, &y, or &, .

Using the slowly varying amplitude approximation for
the pulsed optical fields A; and A,, we write these gen-
erated fields with the sum and the difference frequencies,
respectively, as®

By using Eq. (10) and the complete & vector including
absorption, we can rewrite Eq. (16) as

27wl lexp(iAk.,l) — 1]
As(l, 03 = wg) = i o x D w5) —
3( w3 wO) lczké(ws) Xz]k w3 N lAk+

X eXP[",Ba(fbs)l]A1(w1)A2(wz = wg).
amn

Similarly for Eq. (13),
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2m0y ,exp{idkll = [By(w1) + By(wn)]l} = expl—By(wy)l]
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, (18)

A, - =] b
&I, wg — o) chk;(w,;)p

iARL — [By(wy) + Ba(wy) — Bylwy)]

.
-

which is equixlralent to

2 .
T} exp(idk.l) — 1
Ayl 0f = 0g) = | By, SPELED) T 1
4a(l, wg ~ wg) lczk;(w4) Xijr(@4) ok
X exp[ —~B4(w)l]AT (w1)As(wg — wy),
19)

where the complex phase mismatch and absorption are
Ak, = —kg(ws + w1) + ki(wg) + ky(wg), (20)
Ak_ = —ky(wy — 1) = ky(w1) + ka(wg)  (21)
and at the inside face of the EO crystal
Ap(w) = Ay(z' = 0,w). (22)

As will be shown in the following discussion, there are
three optical fields with the same frequency w: Ej(w)
from the undepleted optical beam, E3(w) resulting from
sum-frequency generation, and E,(w) resulting from
difference-frequency generation. For Es(w) and E (),
the fields radiated at frequency o are obtained from the
results of Eqs. (17) and (19), with

w; =0 and wy=w - Q (sum frequency),
w; =0 and wy = w + O (difference frequency),
kg(w) = ky(w).

The total fields E; and E, radiated at « by sum- and
difference-frequency generation, respectively, are then
obtained by integration over the THz range determined
by the bandwidth of the THz pulse:

+o 7l

Bl 0) = i j (w0, 0 - Q)

—= c2k ()
[exp(iAkJ) -1
iAk,

X exp[~iQ(f + 7)]Az(w — Q — wq)
X exp[—i(w — Q — wy)t]dQ, (23)

]eXp[ika(w)l]A1(9)

+0 Qe

El o) =i f XA (@3 Q, 0 + Q)

-= c?k3(w)
[exp(iAk_l) -1
iAk_

X exp[+iQd(t + 7)]As(w + Q — wp)
X exp[~i(w + Q — wy)tldQ, (24)

]eXP[iks(w)l]AT(Q)

where, as illustrated in Fig. 3 below, 7is the relative de-
lay between the optical and the THz pulses. Then

+o Q7w 2
Es(l,w) =i f X (0;Q, 0 = Q)

-c0 Czké(w)
exp(iAk,l) — 1
iAk .

X A (Q)As(w — Q — wo)exp(—iQlr)dQ

X exp[iks(w)l — i(w — wg)t], (25)

+o el 9
El,0)=i f X§j,3(m;ﬂ, o+ Q)

- Czké(w)
exp(iAk_l) — 1]
X —————— e ——
iAk

X AXQ)Ag(w + O — wo)exp(+iQr)dQ
X explikg(w)l — i(w — wo)t]. (26)

The total field radiated at frequency w is then, by su-
perposition,

Eg + E,
f T ik xfws 0, 0 — @)
=i (@) expliks(wil]| xijn(w; @, @
(expliAk (D, 0)I] — 1
X A (Q)Ag(0 - Q -
AL (O, ) 1{)Ag(w wg)

X exp(—iQdr) + ng)(w; Q0+ Q)
exp[idk _(Q, w)l] — 1
iAkR_(Q, )

X

X AF(Q)Ay(w + Q — wg)exp(iQdr)
X exp[ —i(w — wp)t]d. 27

Replacing Q by —Q within the second set of braces in
Eq. (27) and using the relations

CARL(=0,0) = A0, W), (28)
| AF(-0Q) = A,(9), ©29)
X0 =0, 0 + Q) = XPH@; 0,0+ ), (30)

we obtain
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+o Qrw?
c2ky(w)
X [Reka(w Q,0 - Q)] ‘
[exp[zAk+(Q,w)l] —1)¢
AR (O, )
X A1(Q)Az(0 — O ~ o)
X exp[~il7 — i(w ~ w)t]dQ. (31)

Es+Ey= f ———expliks(w)l]

Assuming that there is no depletion of energy from the
pump waves, the total optical field E(w) is the sum of the
three components

E(0) = Ey(0) + E3(0) + Eyo). (32)

After projection depending on the geometry and spatial
orientation of a particular crystal, we introduce the new
axes €., €,, and &,. Then the effective nonlinearities
X i and x2g describe the nonlinear propagation in direc-
tions &, and &,. For the crystals usually employed, x.gis
proportional to only one y;;; , depending on the symmetry
of the crystal. Ej, + E4, and E3, + E,, are the fields
radiated in the directions of polarization &, and &,, re-

spectively. Then let, E, and E, be the components of E
relative to &, and &,. At the output of the crystal,
Ey(w) = Ey.&, + Ey 8,
= Ay, explik (@)l — i(0 - wp)t]d,
+ Ay, explik,(0)] — i(0 — wp)t]é,, (33)
E () = Egy(0) + Eg(w) + Eg(w), (34)
Ey(0) = Egy(w) + Egy(w) + Egy(w), (85)
with
Eg, + Eyy

+o Qgrp?
= ;j h' (e )exp[zk (o] (0; 2, 0 = Q)

exp[iAk. (O, w)l] - 1

[ Ak (0, @)

X A1(Q)Az(0 — Q — o))

X exp[—iQ71 — i(w — wy)t]dQ}, (36)

E;, + E,,
+o 2w’
= f PETRIoN )eXP[lky(w)l]Xyeﬁ(w Qo-Q)
[exp[iAk+(Q, o)]1-1
Ak (Q, ©)
X exp[—iQ7 — (0 — wy)E]dQ. (387

A1(D)Ag(0 — Q — wy)

We now connect the coherent sum and difference mix-
ing ‘with phase modulation of the propagating optical
pulse by the definitions

E(0) = Eg(0)[1 + ig,(w, 1], (38)
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((.0) EZy(w)[l + lq’y(w T)]’ (39)
where the phase modulation is given by

E3x(l, w) + E4x(l’ w)

Pxlw, 7) = B, (@) ) (40)
E3y(l, w) + E4y(l7 w)
¢y(w’ T) - iEzy(w) . (41)

When we assume that the total dephasings ¢, and ¢,
are small compared with 1, Egs. (38) and (39) yield

Ex(w) = E2x(w)exP[i(Px(w) T)]> (42)
Ey(w) = Ezy(w)eXP[i‘Py(‘U, 7. (43)

These results are now in a form to enable us to under-
stand the physical basis of EO detection as phase modu-
lation of the optical pulse caused by the electric field of
the THz pulse by means of the coupling of the EO crystal.
In Section 3 we present the technique of ellipsometry
used for the measurement of this phase modulation.

3. MEASUREMENT OF PHASE
MODULATION BY ELLIPSOMETRY

Let us now consider the measurement of phase modula-
tion by ellipsometry, as illustrated in Fig. 1. For a mono-
chromatic wave, the general solution can be found in Ref.
10, where the incoming field components referenced to the
axes of the A4 plate are

E, = ap(w)cos[k(w)z — wt + ¢ w)],

E, = ag(w)cos[k(w)z — wt + ¢y (w)], (44)
where ¢, and ¢, are the dephasing for both components of
the electric field.

For our specific example the M4 plate adds a #/2
dephasing on axis Y. Subsequent analysis by a suitably
oriented Wollaston polarizer gives the intensities of the
two components of the resultant elliptically polarized
light (see Figs. 1 and 2). The difference of the two inten-

sities gives the measured signal.
The field components after the M4 plate are

E, = ag(w)cos[k(w)z — ot + o.(w)],
E, = ap(w)cos[k(w)z — wt + ¢,(0) + (7/2)]. (45)

Defining the dephasing ¢ equal to ¢, — ¢, and assum-
ing that ¢ is small, we obtain the major and minor axes of
the polarization ellipse after the plate (see Fig. 2):

a(w) = ag(w)[1 + Yap(w)],

b(w) = apg(w)[1 — Y2¢(w)]. (46)

Wollaston ~

Nonlinear crystal /4

Detectors

Fig. 1. Ellipsometer with a M4 plate and a Wollaston polarizer.
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Fig. 2. Polarization ellipse (solid curve) for the electric field af-
ter the M4 plate, compared with a circle (dashed curve).

After the Wollaston polarizer, both intensities I . and Iy
are detected: ,

. +oo
I, = 1/zeocf |a(w)|?dw,
0

+oo
I, = 1lzeocf |b(w)|?dw. 47
o .

Hence

2 to v -
—I, = f lag(w)|?dw + 1/4J lag(®)e(w)|?do
0

€oC 0

+ Ref ealao(w)lr‘)‘P(w)dw, (48)
0

2 o *°°
—I, = J. lao(w)|?dw + 1/4f |ao(w)p(w)Pdw
€9C 0 0

+oo
- Ref lao(@)2e(w)dw. (49)
0
Then the signal S is equal to

+oo
S=1,-1I, = ec Ref lag(@)|2p(w)do.  (50)
0

4. DETECTION OF THE ELECTRO-OPTIC
SIGNAL BY ELLIPSOMETRY

We can now adapt the results of Section 2 to the situation
considered in Section 3 to calculate the measured EO sig-
nal. For this we consider the case when the generated
electric fields come from a nonlinear process in an isotro-
pic nonlinear crystal. For this crystal the linear and the
nonlinear properties are assumed to be independent of po-

larization and propagation direction. At the input of this

crystal, an electric field A with optical frequencies is
sent with a 45° polarization orientation relative to the
axes X and Y, collinearly with a THz electric field Ay, po-
larized along X. Then, using the fact that both dephas-
ings ¢, and ¢, are small, we connect with the notation of
Sections 2 and 3 by the relationships

G. Gallot and D. Grischkowsky

ag(w) = Ag,(w)explik(w)l]

= Ay, (w)exp[ik(w)l]
= A (w)explik(w)l], (51)
A(Q) = A, (Q). (52)

For the case considered here and from Egs. (40) and (41)
we obtain

= Qy T Oy

J-+eo 2w @) qQ Q)
= mmxefr(a’, , @

AR (D, w)
XvATHz(‘Q)Aopt(w -0 - (00)

Aopt(w — )

{exp[iAk+(.Q, wi]—-1

exp(—iQndQ, (53)
with
ngff) = Xl — Xett- (54)

We require the absolute value |2'(w)| in Eq. (53) to ex-
tend the integration of Eq. (50) from — to +». We then
obtain the EO signal by using Eq. (50):

3 €yC +o e Qre? 5 ;
()= 7Re f_w f.«. c—zlk,(w)lexp[ Blw)l]
exp[iAk . (Q, w)l] -1
(2} .. -
X Xeg(wi 0y @ Q)[ iAkL(Q, @)
X ATHZ(Q)A:pt(w - wO)Aopt(w = O - wy)
X exp(—iQ7)dQdw, (65)

where the prefactor of 1/2 comes from changing the limits
on the integral in Eq. (55) compared with those in Eq.
(60). Equation (55) is rewritten more simply as

4

8(7) = 7.r—:(lRef WATHZ(Q)f(Q)exp(—iQT)dQ, (56)

-0

with

+o0 2
Q) = j_ |k,c:w)|eXP[—ZB(w)l]xézéf’(w; Q,0-0)
expliAk . (w, Q)] — 1]
Ak (@, Q)

x A:)kpt(w - C‘-’0)‘40;”;(“) - O - wg)do. (67)

Because f(Q) is Hermitian, i.e., f(—Q) = f*(Q), the in-
tegral of Eq. (56) is real and the designation Re can be
dropped. The final result for the EO signal then becomes

S(r) = —2 f “Am(Q)f(Q)exp(~i0NAQ.  (58)
c —

- The function f(Q)) expresses in the frequency domain
the various experimental features of EO detection of THz
pulses that can cause pulse distortion, loss of bandwidth,
or both. If A(Q)) were frequency independent, the mea-
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sured EO signal pulse S(7) would be a replica of the THz
pulse that is entering the EO crystal.’* However, as can
be seen from an inspection of the individual terms in Eq.
(57), the measurement can be compromised by several
factors. The spectral amplitudes can be changed and the
measured pulse distorted by the frequency-dependent
nonlinearity Xff‘;%, by the strong THz absorption of the EQ
crystal, by the frequency-dependent coherence length,
and by the spectral attenuation that is due to a too-broad
(in the time domain) optical probing pulse. The distor-
tions from x'Z and THz absorption are especially strong if
the THz spectrum overlaps the resonant frequencies of
the EO crystal (see Appendix B).

5. APPROXIMATE SOLUTION

Consistent with the slowly varying envelope approxima-
tion used in this theoretical approach® and for the usual
experimental situation in which the optical bandwidth of
the interrogating light pulse is small compared with the
optical carrier frequency, we can make an important sim-
plification of our general result for the detected EO signal.
In this case w = wy; then, to a good approximation {(see
Appendix A), the more general expression of Eq. (58) for
the EO signal simplifies to

mTEy Wy
S0 =~ vy

exp[—2B(wo)l]

+0
xf X (w03 Q, 0 — Q)

iAk , (wg, Q)
X Amg(Q)Cop(Q)exp(—iQ7)dQ,  (59)

where C+({) is the autocorrelation of the optical electric
field as shown below:

{exp[iAk s (wg, MI] -1

+o

Copt(‘Q') = f A:)kpt(w - wO)Aopt(w -

—e0

wy — Q)do.

(60)
The EO signal is then rewritten to be

+c
S(T)“f Arg,(D)f(Q)exp(—~iQ)dQ,  (61)

where
f(©) = Copt Qx5 @, wp — Q)
expliAk 4 (wy, Q)] - 1
iAk 4 (g, })

This result expresses the time-dependent EO signal S(7)
as a relatively simple Fourier integral, which is easily
evaluated. However, as we shall see in Section 7 below,
for many applications the actual time-dependent pulse
8(7) is of less interest than the corresponding complex
spectrum S(Q).

Here, again, f(Q)) shows the effect on the EO signal of
the various parameters of the EO technique. If f(Q})
were independent of frequency, S(7) would be a faithful

(62)
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replica of the incoming THz pulse that is entering the EO
crystal.l! Here, for the approximate solution for which
Aw <€ wy, f(Q) is the product of three frequency-
dependent terms that act as spectral filters on the incom-
ing THz complex spectral amplitude Amg,(Q). The first
Copt(€2) is the complex spectrum of the autocorrelation of
the probing light pulse. For the usual case the optical
bandwidth Aw is much larger than the THz bandwidth, so
this term has little effect. The frequency-dependent y'2
can distort the incoming THz spectrum, as shown in Ap-
pendix B. The term enclosed by braces in Eq. (62) re-
duces to the well-known parametric result®
Isinc(Ak ,1/2), for real Ak, whereas the imaginary part
of Ak . describes the usually strong absorption of the THz
radiation by the EO crystal. The effect of this term is re-
duced by the EO crystal thickness [/ being made as small
as possible. In the limit of small thickness, relation (61),
including the frequency-dependent x'2, is similar to the
result obtained by Auston and Nuss.®® The combined ef-
fect of all these terms can distort the EO signal and re-
duce and cause discontinuities in the corresponding mea-
sured THz spectrum. These factors must all be
considered in relating the measured EO signal to the in-
coming THz pulse.

6. COMPARISON WITH PREVIOUS
RESULTS

By rewriting our frequency-domain evaluation of the EO
signal S(7) as given in relation (61) in the time domain,
we obtain a more general description of the intuitive time-
domain picture that was introduced by Bakker et al.®
For this we need now to introduce the concept of group ve-
locity v, of the optical probing pulse.®!% If the disper-
sion is small for the wave vector of the optical pulse, we
can use the approximations

dk
k(wg + Aw) =~ E(wg) + | —| Aw,
do
@g
dx 1 ng
T = — = — (63)
dow vg ¢

Then, following Nahata et al.® or Wu and. Zhang,* we
can rewrite Eq. (20) in the simpler approximate form as

Ak, = —k(wy + Q) + k(Q) + k(wq)

d%
= —k(wo) - Q(——) + k(Q) + k(wo)
dw

@
~ R(Q) = Ey(Q), B 64)
where we define the wave vector k,(Q) of the envelope of
the optical field to be

- (dk) .
ke(0) = Q| —| =

@

ng. (65)

Relation (61) can now be shown to be equivalent to
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l +0o0
S(r) = fodzf_ Copt(g)

X exp[ —ikg(D)2]x{F(00; O, wo — Q)Am(Q)
X explik({)z]exp(—iQ7)dQ; (66)

i.e., the iriteé‘ration with respect to z of relation (66) gives
relation (61). Relation (66) is then equivalent to the fol-
lowing correlation:

! +o
S(7) « j dzf Iz, t — m)Pgolz, t)dt, 67
0 - —-co :

where

+oo

Ppofz, t) = f x B (w93 Q, wg — Q)Aqg,(Q)

X explik(Q)z]exp(—iO¢)dQ. (68)

Pgo(2,t) is designated as the propagating EO pulse,
which linearly propagates through the crystal, similarly
to the THz pulse. However, as we can see from relation
(68), the pulse shape of the EO pulse can be quite differ-
ent from that of the THz pulse, especially if the frequency
components of the THz pulse overlap resonance frequen-
cies of the EO susceptibility x| as shown in Appendix B.
It is informative to note that Cop(2), which is an auto-
correlation in the frequency domain, appears as the prod-
uct of optical fields I, which is proportional to the in-
tensity of the optical pulse in the time domain, as shown
in relation (67). Therefore I,y is given by

Toplt) = |Aouu(®)[?, (69)
Topoi(z,t) = exp(—2B¢2)opi(z = 0,2 — 2z/v,).  (70)

Equation (70) indicates that I,,(t) propagates with group
velocity v, and is attenuated by optical absorption B, of
the EO crystal.

The result for EO signal S(7) as expressed in relation
(67) has the intuitively appealing interpretation of the
cross correlation between the interrogating optical pulse
traveling at the optical group velocity and the propagat-
ing EO pulse (see Fig. 3) integrated over the EO crystal
length. It is clear from Fig. 3 that measuring the EO
pulse requires that the time duration of I,,(¢) be signifi-
cantly less than the temporal features of the EO pulse.

Topt
/\\/ AN
— k()

Fig. 3. Propagation of optical intensity I, and EO pulse Py in
the nonlinear crystal.
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This requirement shows that the bandwidth Aw of the op-
tical pulse should be much larger than the bandwidth of
the THz pulse. For the usual experimental situation one
can easily satisfy this requirement while keeping Aw
much less than the carrier frequency wy. This time-
domain picture was introduced by Bakker et al.,® and our
result of relation (67) reduces identically to their result
for their case of a frequency-independent x%, for which
the EO pulse has the same shape as the THz pulse.

7. TERAHERTZ TIME-DOMAIN
SPECTROSCOPY WITH ELECTRO-OPTIC
DETECTION

Because of the possibly strong time-domain distortion of
the measured EO signal compared with the THz pulse in-
cident upon the EO crystal, the general applicability of
the THz TDS technique! was previously unclear. Using
the complete frequency-domain evaluation of the EO sig-
nal of Eq. (58), we now show that it is possible to perform
THz TDS with EO detection.

For THz TDS, two EO signals are measured, with and
without the investigated sample in place. Let H(Q) be
the desired complex spectral transmission function of the
sample in the THz range. If the complex amplitude spec-
trum of the THz field at the input to the sample is A, (),
then the spectrum at the output is Agu(Q)
= H(Q)AR(Q). Given that the detected EO signal is
described by Eq. (58), we obtain Sy mpe(7) and S,.(7)
with and without the sample, respectively. Then the
complex amplitude spectra of S gumpie and Syrer yield*

TEY
Sree(Q) = Tt12(‘Q)AIn(‘Q’)f(‘Q)’ (71)

where £15,(Q) is the complexiFresnel transmission coeffi-
cient for the THz pulse into the EO crystal, and

TTE
S sampie(2) = T°H(mt12<mAh(mf(m. (72)

The following ratio eliminates the transmission coeffi-
cient £15(Q)) and the filter function f(}) that describes the
EO detection and gives the spectral transmission of the
sample:

Ssample(‘Q)
Sref(‘Q)

From Eq. (73) we clearly see that the ratio of the complex
spectral amplitudes gives the desired H({}) function that
describes the sample. Even though f(Q) has been math-
ematically eliminated because of the EO detection, the
spectral coverage may not be continuous, mainly as the
result of the absorption of THz radiation by the EO crys-
tal and to a lesser extent because of phase mismatch and
of the frequency dependence of the EO susceptibility, as
shown in Appendix B. ‘

Practically speaking, the applications of EO" detection
to THz TDS will depend on the signal-to-noise ratio of the
complex amplitude spectrum of the measured reference
pulse, independently of the fact that the EO signal may
not be a replica of the THz pulse that is-entering the EO

= H(Q). (73)
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crystal. Although the EO signal and the corresponding
complex spectra are determined by the incoming THz
pulse, the signal is also determined by the type, orienta-
tion, and thickness of the EO crystal and by the pulse
width and the carrier frequency of the interrogating opti-
cal pulse. The corresponding spectrum may.then have
regions of low signal or gaps in the coverage.

8. CONCLUSION

We have presented a complete frequency-domain descrip-
tion of electro-optic detection of terahertz electromagnetic
radiation, including a description of the ellipsometry tech-
nique employed. These frequency-domain results show
the effect of EO detection of a pulse of THz radiation as
the product of three spectral filters acting on the complex
amplitude spectrum of the THz pulse that is entering the
EO crystal. If the product of these filter functions had a
smooth spectral response much broader than the incom-
ing spectrum of the THz pulse, the measured EO signal
would be essentially the same as the THz pulse that was
entering the EO crystal.l! However, usually such is not
the case. The first filter function describes the spectrum
of the autocorrelation of the optical probing pulse, which
is usually much broader than the spectrum of the mea-
sured THz pulse. Consequently, this filter has little det-
rimental effect on the EO measurement. The second fil-
ter describes the frequency dependence of the EO
susceptibility X%Z, which can be strongly frequency de-
pendent, as shown in Appendix B, and can thereby distort
the EO signal and the corresponding spectrum, indepen-
dently of the thickness of the EO crystal. The third filter
describes the frequency-dependent coherence length de-
termined by the mismatch between the optical probing
pulse that is traveling at the optical group velocity and
the frequency components of the propagating THz pulse.
This filter function produces the usual Maker fringes and
includes the absorption of the propagating THz radiation
in the EO crystal. The effect of this filter can be reduced
by a decrease in the thickness of the EO crystal. The
combined effect of these three filters must be considered
when the measured EO signal is related to the incoming
THz pulse.!! Independently of whether there is a sub-
stantial time-domain distortion of the measured EO sig-
nal compared with the THz pulse, this analysis shows
that the usual procedures of THz TDS are applicable.
The THz TDS analysis involves only the ratios of the com-
plex amplitude spectra of the measured EO signals.

For the usual experimental situation in which the op-
tical bandwidth of the interrogating light pulse is small
compared with the optical carrier frequency, we have ob-
tained an important simplification of our general
frequency-domain result for the detected EO signal.
When the Fourier integral that describes this simplified
result is rewritten in the time domain, we obtain a more
general description of the intuitive time-domain picture
that was introduced by Bakker et al.® Restricting our
time-domain result to the earlier frequency-independent
EO susceptibility situation,’ we identically obtain their
intuitive picture, in which the EO signal is given by a
cross correlation between the interrogating optical inten-

Vol. 16, No. 8/August 1999/J. Opt. Soc. Am. B 1211

sity pulse traveling at the optical group velocity and the
propagating THz pulse integrated over the EO crystal
length.

APPENDIX A: INFLUENCE OF THE
SPECTRAL WIDTH OF THE OPTICAL PROBE
PULSE

Let us consider no dispersion, constant absorption, and a
perfect velocity match. Then f(Q) described in Eq. (57)
becomes proportional to

+c0

f(Q)) « f wAs® — wo)Ap(o — wy — Q)de. (Al)

Our goal in this appendix is to describe the accuracy of
the approximation that we used to obtain Eq. (59) and
more precisely the influence of the multiplication by w in
relation (A1). Let A, be a Gaussian pulse:

(A2)

1 w?
Aopt(w) = Wexp sz ‘

Relation (A1) yields

1 +o
) = TAw? f ®

—c0

1
X exp{ —Z:o—z[(w - wg)? + (w — wy — 9)2]}(10)
1 +o
& wszf wg(w)dw, (A3)
with

1
glw) = exp{,-ﬁ[zwz - 20(20 + Q) + o2
w

+ (wg + 9)2]]. ' (A4)
Noticing that
dg 1
d_w = —m(‘lw - 4(.00 - 2Q)g(w), (A5)
we obtain

+00
f g(vw)dw. (A6)

L[ 0
f wg(w)dw = (‘"0 + 7
Then

1
AwN2m

Q) =

A i AT
+ — ——— B
wo 2 exp 2A w? (A7)

Then, to a very good apprmdn:;ation (Q < wy),

1 (02

Q) A \/z_wo exp -—m) = 0oCop(Q). (A8)
w ar
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Fig. 4. Absolute value of the second-order susceptibility in
ZnTe.

APPENDIX B: FREQUENCY DEPENDENCE
OF x%

The frequency dependence of the effective nonlinear sus-
ceptibility x'Z can be approximated in the THz domain by
an extensioni® of the well known Miller rule. Using

€
x=x+x=—-1 X =n?-1,
0

= —-n? (B1)

we obtain
X2(Q) = (0o xi (@[ S5XA(Q) + S5px()]. (B2)

The coefficients §5;, and & fjk are frequency independent
and depend on the nonlinear crystal. The effective non-
linear susceptibility X(j% can be estimated from Eq. (B2)
and the linear susceptibilities in the optical domain
[xi(wo) and X;(@o)] and in the THz domain [x;(0}) and
X ()1

As a specific example, we can use Eq. (B2) for ZnTe
crystals. The normalized second-order susceptibility in
ZnTe, for which the linear susceptibility of ZnTe (Ref. 16)
is used and &%, is assumed to equal 6%,,, is .shown in
Fig. 4.

Clearly, the frequency dependence shown in Fig. 4 can
cause extreme distortion of the measured EO signal pulse
S(r) compared with the incident THz pulse if the fre-
quency spectrum of the incoming THz pulse overlaps the
resonance at 5.3 THz. Also, note the amplitude drop on
the high-frequency side of the resonance compared with
that on the low-frequency side.
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