Gallot et al.

Vol. 17, No. 5/May 2000/J. Opt. Soc. Am. B

Terahertz waveguides

G. Gallot,* S. P. Jamison,’ R. W. McGowan,* and D. Grischkowsky

School of Electrical and Computer Engineering and Center for Laser and Photonics Resenrch,
(klahoma State Universily, Stillwater. Oklahoma 74078

Received September 1, 1999; revised manuscript received December 16, 1999

Quasi-optical techniques are used to efficiently couple freely propagating pulses of terahertz (THz) electromag-
netic radiation into circular and rectangular metal waveguides. We have observed very dispersive, low-loss
propagation over the frequency band from 0.65 to 3.5 THz with typical waveguide cross-section dimensions on
the order of 300 um and lengths of 25 mm. Classical waveguide theory is utilized to ealculate the coupling
coefficients into the modes of the waveguide for the incoming focused THz beam. It is shown that the linearly
polarized incoming THz pulses significantly couple only inte the TE;;, TE,;, and TM,;; modes of the circular
waveguide and the TE;, and TM,, modes of the rectangular guide. The propagation of the pulse through the
guide is described as a linear superposition of the coupled propagating modes, each with a unigue complex
propagation vector. This picture explains in detail all the observed features of the THz pulse emerging from
the waveguide. We demonstrate both theoretically and experimentally that it is possible to achieve TE,,
single-mode coupling and propagatien in a suitably sized rectangular waveguide for an incoming focused, lin-
early polarized THz pulse with a bandwidth covering many octaves in frequency and that overlaps more than
35 waveguide modes, Finally, to facilitate the application of these THz waveguides to THz time-domain spec-
troscopy of varicus configurations of dielectrics in the waveguide including surface layers, we present analytic
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results for the absorption and the dispersion of such layers. © 2000 Optical Society of America
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1. INTRODUCTION

The terahertz (THz) frequency range, located midway be-
tween microwaves and visible light, presents a new fron-
tier containing an abundance of technical applications
and fundamental research problems. Consequently, THz
research solutions and techniques can come from either
optics or microwaves or in many cases unigque combina-
tions of both. Associated with THz investigations is the
need for enabling THz technology and techniques. How-
ever, because of the developing nature of THz capability,
commercial THz technology is minimal and one must rely
on custom fabrication. At the present time, one-of-a-kind
laboratory, optoelectronic THz transmitters and receivers
provide an interim solution enabling both fundamental
research and applications studies.’?

One outstanding problem has been the guided-wave
propagation of THz radiation and the associated efficient
coupling between guided and freely propagating THz
waves, Recently, efficient, broadband coupling of freely
propagating pulses of THz electromagnetic radiation into
circular metal waveguides has been demonstrated.? This
work also reported the highest guided-wave performance
to date, obtained with a 240-um-diameter stainless-steel
waveguide over the frequency range from 0.8 to 3.5 THz
and with a power absorption coefficient of less than 1
cm” !, This absorption is much less than that of coplanar
and microstrip transmission lines.* However, for circu-
lar waveguides the undistorted propagation of picesecond
THz pulses was shown not to be possible, because of the
extreme dispersion near the cutoff frequencies overlapped
by the pulse bandwidth covering many octaves in fre-
quency.

A promising application of THz waveguides appears to
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be surface-specific frequency-dependent absorption mea-
surements with the use of THz time-domain spectroscopy
(THz-TDS).2  From experimental measurements made
on the absorption of water, we believe that for a similar
polar molecule, THz-TDS has the sensitivity to character-
ize the absorption of nanogram quantities of samples of
toxic or precious gases contained in a THz waveguide.
Here, we present a comprehensive experimental and
theoretical study of the application of quasi-optical tech-
niques to couple freely propagating pulses of THz electro-
magnetie radiation into both circular and rectangular
metal waveguides., We observe very dispersive, low-loss
propagation over the frequency band from 0.65 to 3.5 THz
with frequency-dependent group velocities v, ranging
from ¢/4 to ¢ and phase velocities v, from 4c¢ to ¢ (where
Uplig = ¢?) for waveguides with typical diameters or rect-
angular widths of 300 pm and lengths of 256 mm. We
present a complete classical waveguide theory calculation
to obtain the coupling ceefficients into the modes of the
waveguide for the incoming focused THz beam, Even
though the input spectrum overlaps the cutoff frequencies
of more than 25 circular and 35 rectangular waveguide
modes, the calculated coupling coefficients and the experi-
ments show that the linearly polarized incoming THz
pulses significantly couple only into the TEy;, TE;y, and
TM,, modes of the circular waveguide and the TE; and
TM,; modes of the rectangular guide. The propagation of
the THz pulse through the guide is described as a linear
superposition of the coupled propagating modes, each
with a unigue complex propagation vector. This picture
explains in detail all the observed features of the THz
pulse emerging from the waveguide. We demonstrate
both theoretically and experimentally that it is possible to
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achieve TE,, single-mode coupling and propagation in a
suitably sized rectangular waveguide for an incoming fo-
cused, linearly polarized THz pulse with a bandwidth cov-
ering many octaves in frequency and overlapping more
than 35 rectangular waveguide modes. Finally, to apply
these THz waveguides to THz-TDS of dielectrics in the
waveguide, we present an analytic calculation for the ab-
sorption and the dispersion of dielectrie films within a
waveguide.

For completeness we note that the reshaping of freely
propagating THz pulses by passage through thin and
thick metal slits*® and dichroic metal filters® has been ex-
perimentally and theoretically studied. Hollow metallic
waveguide transmission has been reported up to 200
GHz,” where the waveguides were constructed with pho-
tolithographic techniques. It should also be noted that
rectangular waveguides that cover a frequency range up
to 220--325 GHz are commercially available on a special-
order basis, but only for small lengths up to 25 mm.
Such waveguides, designated as WR-3, have typical di-
mensions of 850 um x 425 um. In comparison, the
waveguide studies presented here cover the frequency
range from 100 to 4000 GHz, representing a 1-order-of-
magnitude increase in frequency.

The organization of this paper is as follows: First, we
describe the experimental setup and the waveguide fabri-
cation in detail, including muitimode experimental re-
sults. We then present the theory of the THz-TDS opto-
electronic detection of beams propagating through THz
waveguides. This is followed by the theoretical and ex-
perimental demonstration that a THz beam can be
coupled into a single mode and propagate in a suitably
sized rectangular waveguide. We conclude with a theo-
retical study of some applications made possible by the
use of a single-mode propagation, in the domain of spec-
troscopic measurements of waveguides with thin films.
This is followed by a complete description in Appendixes
A and B of the microwave theory used to obtain our cou-
pling coefficients and complex propagation vectors. The
new results pertaining to the THz waveguide and the
THz-TDS problem constitute the theory section in the
main body of the manuscript.

2. EXPERIMENTAL SETUP

The experimental setup for broadband THz waveguides,
shown in Fig. 1, consists of an optoelectronic transmitter
and receiver along with beam-shaping and beam-steering
optics. A detailed description of the entire system has
been previcusly published.l’2 The picosecond THz pulses
are generated as follows: 40-fs optical pulses at 820 nm
from a KLM Ti:sapphire laser are focused onto the edge of
the positive line of a coplanar strip line on semi-
insulating GaAs, which is dc biased at 70 V. The optical
pulse creates an electron—hole plasma, and the subse-
quent acceleration of the carriers generates a near-single-
cycle electromagnetic pulse of THz radiation that is lin-
early polarized along the direction of the bias fleld. In
the standard THz-TDS setup, the sample is placed at the
THz beam waist at the confocal position between the two
parabolic reflectors. The THz beam system has symmet-
ric confocal optics with respect to the center line of the
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Fig. 1. Optoelectronic THz-TDS system incorporating quasi-
optical coupling to the THz wavegnide, The generated THz
pulse is linearly polarized in the plane of the figure and along the
X axis at the waveguide entrance face.

system hetween the transmitter and the receiver. This
gituation gives a unity, frequency-independent, power
coupling efficiency between the transmitter and the re-
ceiver (see Eq. (2.16), Rel. 8). The transmitting antenna
ig at the focus of the silicon lens, which collimates the
frequency-independent far-field pattern of the antenna
into an approximately Gaussian beam with a l/e beam
waist diameter of 5 mm and with a plane-wave phase
front. This is beam waist W1. This beam waist is In
turn in the focal plane of the transmitter paraboloidal
mirror, which focuses the THz beam to the second beam
waist W2 with beam diameters proportional to wave-
length and with plane-wave phase fronts. In the stan-
dard system, the THz optical train is identical (but re-
versed) from this point on to the receiver. For the
waveguide experiments, an additional silicon lens is
placed at the beam waist W2, thereby producing a third
frequency-independent beam waist W3 with a /e ampli-
tude waist diameter of 200 um and a plane-wave phase
front. This third beam waist overlaps the waveguide en-
trance face. The output face of the waveguide is again in
the focal plane of an identical silicon lens with identical
but reversed optics to the receiver. In the absence of the
waveguide and with the two identical silicon focusing
lenses moved so that their beam waists overlap, the en-
tire system is again confocal and gives a f[requency-
independent, power coupling efficiency of unity between
the THz transmitter and receiver. With the waveguide
in place, the total coupling efficiency between the trans-
mitter and the receiver is determined by the product of
the coupling efficiency of the incoming THz beam into the
waveguide, the transmission factor of the waveguide, and
the coupling efficiency of the output beam into the THz
receiver. Because the input and output faces of the
waveguide are in the focal planes (beam waist) of the
identical foeusing lenses, the coupling efficiency of the in-
coming THz beam is identical to the coupling efficiency of
the output beam into the THz receiver. This coupling ef-
ficiency is determined by evaluating the overlap integral
between the THz beam waist and the modes of the wave-
guide {see Eq. {2.1}, Ref. 8},

The transmitted pulse is focused onto a polarization-

© gensitive, 10-um dipole antenna on ion-implanted silicon-

on-sapphire, which is photoconductively switched by a
second beam of 40-fs optical pulses, generating a dc cur-
rent that is proportional to the instantaneous electric
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field of the propagated THz pulse. By scanning the rela-
tive delay between the detected THz pulse and the gating
optical pulse, one obtains the entire time-dependent THz
pulse, including both field and phase information.

All of the waveguides used in this experiment were fab-
ricated in our laboratory by using commercially available
stock. The stainless-steel cireular waveguide was made
from the most precise metal tube available, a stainless-
steel hypodermic needle. This long guide was 25 gauge
and was 24 mm long with a 240-um diameter. The short
guide was also 25 gauge but had a measured 280-um di-
ameter and a length of 4 mm. Although the hypodermic
needles are the best commercial tubes available, they
have significant inconsistency in inner-diameter dimen-
sions and circular precision. To ensure no deformation of
the tubes during the cutting process, we encapsulated the
tube in hard mounting wax on a hot plate. Once encap-
sulated, the tube was cut on a wire saw with low cutting
pressure. The mounting wax was removed by ultra-
sounding in acetone, and the edges were carefully
deburred. This method is extremely important for
softer waveguide metals such as copper and brass. Com-
pared with stainless steel, which has a conductivity of
1.1 x 1050 'm™!, much longer waveguides of high-
conductivity metals could be used. for example, copper
and brass. Copper has a conductivity 36 times larger
than that of stainless steel, giving an absorption coeffi-
¢ient six times smaller for Cu than for stainless steel.
Brass is also a good choice, with a conductivity slightly
less than that of copper. However, for copper we could
not obtain circular tubing without significant ellipticity
and cross-section variations with length. Consequently,
the complicated experimental results for copper guides
are not presented here.

The rectangular waveguides discussed here have been
fabricated by cutting grooves in brass plates. With the
use of a 260-um jeweler's saw blade, a precise groove 1s
cut on a 25-mm-square, 6-mm-thick brass plate. Another
brass plate is tightly connected to the grooved plate to
complete the waveguide. The entrance and exit sides of
the guide are carefully milled to obtain high-precision flat
and burr-free entrance and exit faces. To study the in-
fluence of the waveguide dimension on the relative cou-
pling efficiencies, we cut several waveguides of different
size on the same 25-mm-long plate.

3. EXPERIMENTAL RESULTS FROM
CIRCULAR WAVEGUIDES

The first experimental results were obtained with circular
stainless-steel waveguides.® A reference pulse is ob-
tained by removing the waveguide and moving the two
silicon lenses to near contact with a 300-pum-diameter ap-
erture placed between them at their common focus W3.
Figure 2(a) shows the reference THz pulse, and Fig. 2(b)
shows that the useful amplitude spectrum extends from
0.1to 4 THz. Figure 3(a) shows the measured transmit-
ted pulse through the 24-mm-long, 240-um-diameter
stainless-steel circular waveguide.  The incoming
coupled pulse, which has a duration of approximately 1
ps, has been stretched to approximately 70 ps, with the
high frequencies arriving earlier in time, corresponding to
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Fig. 2. (a} Measured reference THz pulse and (b) relative am-
plitude spectrum of the reference pulge. The small oscillations
apparent in (a) at approximately 6 ps are due to reflections be-
tween the confocal silicon lenses.

negative chirp. The stretching and the consequent chirp-
ing of the transmitted pulse of Fig. 3(a), compared with
the input pulse of Fig. 2(a), is due to the strong group-
velocity dispersion of the waveguide. The waveguide
acts as a dispersive delay line, where the lower frequen-
cies travel more slowly than the higher frequencies. Fig-
ure 3(b) shows the corresponding amplitude spectrum for
the waveguide. Note the sharp cutoff at 0.76 THe, which
compares well with the theoretically calculated cutoff of
the lowest-order waveguide mode TE;; of .76 THz {see
Appendix B). The spectrum presents unusual oscilla-
tions starting at approximately 1.7 THz. As demon-
strated in the theoretical section, these oscillations are
due to multimode propagation through the waveguide.
Experiments have been performed with several other
guides, including brass and nickel circular wavegunides.
Because of changes in alignment, the reference pulse var-
ies between experiments, although the general features of
Fig. 2(a) remain unaltered. Figure 4 shows the mea-
sured THz (a) pulse and (b} spectrum transmitted
through a 25-mm-long, 280-um-diameter brass circular
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waveguide. A sharp cutoff at (.67 THz is also observed
in the brass guide, while for a 280-um guide the cutoff is
calculated to be 0.65 THz.

The qualitative results obtained for the stainless-steel
(Fig. 3) and brass (Fig. 4} circular waveguides are quite
different. For similar input pulses, the maximum ampli-
tude of the pulse transmitted through the brass wave-
guide is twice that from the stainless-steel waveguide.
The temporal stretches, at e, for the stainless-steel and
brass waveguides, respectively, are 20 and 40 ps. The
pulse emerging from the brass waveguide is therefore
twice as long as the one exiting from the stainless-steel
waveguide. These results demonstrate the significantly
reduced loss of the brass waveguide and are in good
agreement with our theoretical simulations. Precise
quantitative results were not obtained because the shape
of the tubes is not constant and is not well defined.
These imperfections lead to perturbations of the wave-
guide modes and rotation of the THz polarization during
propagation.
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Fig. 3. (a) Measured THz pulse transmitted through a 24-mm-
long, 240-um-diameter stainless-steel waveguide. The input
pulse is shown in Fig. 2(a). (b) Amplitude spectrum of the mea-
sured transmitted pulse.
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Fig. 4. (a) Measured THz pulse transmitted through a 25-mm-
long, 280-um-diameter brass waveguide. The input has a dura-
tion of approximately 1 ps. (b) Amplitude spectrum of the mea-
sured transmitted puise.
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4. INTRODUCTION TO THEORY

To study the behavior and the propagation of a subpico-
second pulse of THz radiation in a metallic waveguide,
the modern and current approach would be to directly
solve Maxwell’s equations by finite-difference time-
domain numerical simulation.” In such an approach, the
electric and magnetic fields are calculated through an it-
erative application of the boundary conditions. After
propagation through the guide, the temporal pulse and
spectrum are obtained, but what happens in the guide is
not intuitively clear. Quasi-optical methods combined
with microwave theory are an analytic alternative
whereby the incoming wave of THz radiation at the en-
trance to the waveguide is expanded as a sum of the sta-
tionary field patterns of the modes of the waveguide.
The waveguide modes have been studied for many years

"in microwave technology, so that the theory is well estab-

lished (see Appendix A), In the case of optoelectronically
generated, subpicosecond pulses of THz radiation, the
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large bandwidth makes new phenomena appear, such as
interference between modes and exceptionally large dis-
persion.

5. COHERENT POLARIZED TERAHERTZ
ELECTRIC FIELD DETECTION

We consider now the coherent detection of the THz radia-
tion emerging from the waveguide.? The electric field
E, at the output of the guide can be expressed in terms of
its components with respect to the X and Y axes as

E(x, y, z) = E.x, y, 2)é, + E{x, v, 2)é,. (1)

In general, for any THz receiver with R(x, y, z, w) des-
ignating the beam pattern that is collected with unity
coupling efficiency, the measured output field of the wave-
guide would be given by the overlap integral of E;, with
Rix, v, z, w).2  Qur receiver is optically identical to the
transmitter; it is linearly polarized along the X axis, and
the accepted beam profile at the focal plane (located at the
cutput face of the waveguide) of the cutput silicon lens is
the same as that of the incoming THz beam to the wave-
guide at the beam waist, namely, a Gaussian profile
E (x, y) with a frequency-independent 1/e amplitude di-
ameter of 200 um and a planar phase front. Conse-
quently, R{x, ¥, z, w) = E,ix, y)é,. Using the normal-
mode expansion of Eq. (A6) from Appendix A, one obtains
the expression for the detected signal E,; in terms of nor-
mal modes designated by the subscript p:

Ego, 0) = 2, A, X togexplioft — y(w2],  (2)
P

where

X, = JLE”, . E e.dS = JLEMEgdS (3)

and t,,, is the transmission factor out of the waveguide
given in Eqs. (A10). The integration is over the output
face § of the waveguide. Because of this integral nature
of the detected field, our receiver cannot detect modes
with zero overlap integral; odd modes are not detectable.
The detected signal E,(w, ¢) is expressed as the summa-
tion of sinuscidal functions expliwt — if,(w)z], which is
responsible for additional oscillations in the temporal do-
main and for interference fringes in the spectral domain.
For instance, the power spectrum of the signal detected in
the presence of two modes is

|E42 = crlw)ll + ey{wicosBa(w) — Bilw)]z), (4)

where ¢, and ¢, are constants depending on the particu-
lar modes. Thus, as a result of the strong frequency de-
pendence of the propagation constants, interference ap-
pears where the two modes overlap the same frequency
range, that is to say, for frequencies higher than the high-
est cutofl frequency of the two modes. The interference
deseribed in Eq. (4) for the power spectrum is at first sur-
prising, since the modes are orthogonal and linearly inde-
pendent; however, for a receiver such as a bolometer,
which detects the power rather than the electric field,
there will be no interference in the power spectra.
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Fig. 5. (a) Measured THz pulse (dots) transmitted through a
4-mm-long, 280-um-diameter stainless-steel waveguide and (b)
amplitude spectrum (dots} of the measured transmitted pulse
[Fig. 5(a)]. The solid curves are the theoretical predictions.

Using Egs. (2) and (A6), we compare the experimental
{dots} and theoretical (solid curves) pulse shape and spec-
trum of a THz pulse transmitted through a 4-mm-long,
280-pm-diameter stainless-steel waveguide in Figs. 5(a)
and 5(b}, respectively. For the best fit the theory used a
waveguide diameter of 270 pm, a beam diameter of 160
um, and the spectrum of the reference pulse, and it evalu-
ated the coupling coefficients according to Appendix A.
Analysis of this comparison shows that experimentally,
the amplitude of the TM;; mode was approximately twice
that predicted. We ascribe this discrepancy to wave-
guide imperfection. Under these circumstances we con-
sider the agreement between theory and experiment to be
quite satisfactory.

6. SINGLE-MODE PROPAGATION

In general, a single-mode, single-conductor waveguide ca-
pable of propagating a subpicosecond THz pulse is not
possible, because the pulse bandwidth overlaps many oc-
taves in frequency. However, this situation does not pre-
clude the pulse propagating in a single mode of the wave-
guide if coupling to only one mode can be performed.
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The lower cutoff frequencies of the modes in a wave-
guide are approximately distributed in frequency by oc-
tave. If the bandwidth of the incoming signal is narrow
enough (less than a factor of 2 in the frequency range), it
is possible to choose the dimensions of the guide so that
the bandwidth lies between the lowest cutoff frequency
and the next-higher-order mode. But for a wider band-
width of many octaves, which is the case for optoelectroni-
cally generated, subpicosecond pulses of THz radiation,
the cutoff frequencies of many modes will be in the fre-
quency range of the signal. Consequently, many higher-
order modes can be excited. However, the relative am-
plitudes of the coupling coefficients to these modes are
sensitive to the polarization, the shape, and the phase
front of the incoming beam relative to the geometry of the
guide. By changing the dimensions of the guide, the
shape, or the polarization of the beam, one can faver the
coupling into select modes.

We performed numerical simulations of the mode pro-
Jjection of our incoming Gaussian beam coupled into dif-
ferent waveguides. The mode projection is determined
by decomposing the input field into transmitted and re-
flected waveguide modes. The coefficients A, and B, for
the modes designated by the index p are defined by Egs.
{A7) from Appendix A and represent the transmitted and
reflected mode amplitudes, respectively. These coeffi-
cients are real because we consider coupling at the beam
waist, for which the field is planar. The relative trans-
mitted power P, into specific waveguide modes is given by

P,(w) Z,(w)
T = ¢ A w), (5)
PincidenL ZO

where we refer to the fraction of the energy incident on
the aperture of the waveguide compared with the total in-
cident energy as the geometric transmission, denoted G.
The impedance of the medium outside the waveguide is
denoted Z,,, and Z,(w) is the waveguide impedance of the
mode, referring to either ZEE or ZSM, defined in Egs. (A4)
from Appendix A. The coupling efficiency of Eq. (5) can
be separated into frequency-dependent and frequency-
independent terms by introducing a power transmission
coefficient T'( w) and the frequency-independent mode pro-
Jection (A, + B,) at the guide entrance calculated in Eqs.
(A7) Then

Pplw) ,
= G(A, + B,)*T(w),
Pinuident
Z)(w) 1 A i 2
T(w) = ¢ 7
Zy ‘.Ap + BP.
4Z(,Zp(w)

Zo + Zy(@ P @

Figure 6 shows the calculated mode projection squared
(A, + B,)* of the dominant five modes TE;;, TE 3, TE3,
TM,,, and TM; for a circular guide as a function of the
guide diameter. The solid curve labeled “sum” is the nor-
malized sum of the squares of the mode projections in the
above five modes, where the normalized sum of the
squares of the projections for all the modes of the wave-
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guide is equal to unity. It is found that TE,; remains the
dominant mode over a wide range of guide diameters,
with a maximum mode projection occurring for a diam-
eter of 200 wm, equal to that of the incoming beam. Even
for this optimal combination, the maximum projection for
the TE,; mode remains below 90%. The main reason for
this continued multimode coupling is that the linear po-
larization of the incoming beam is not fully compatible
with the boundary conditions of the circular waveguide,
as can be seen from an inspection of the field pattern of
the TE,; eylindrical mode shown below in Fig. 12 in Ap-
pendix B. This can also be chserved in Fig. 3(b), where
the amplitude spectrum transmitted through a 24-mm-
long, 240-um-diameter waveguide shows an obvious in-
terference pattern, in good agreement with the mode pro-
Jections presented in Fig. 6.

In contrast to the circular waveguides, inspection of the
field pattern of the TE;; mode of the rectangular wave-
guide, displayed in Appendix B as Fig. 10, shows that this
mode is fully compatible with a linearly polarized incom-
ing wave. Figure 7 shows the mede projection squared
(A, + B,)? of the dominant four modes TE;,, TEg, TEys,
and TM;; of a rectangular guide as a function of the guide
dimensions for the linearly polarized incoming plane-
wave beam with a 1/e waist diameter of 200 ym. In Fig.
7(a) the dimension & along the polarization of the beam is
kept constant, equal to 280 pm, and the dimension g var-
ies from 50 to 600 um. The mode projection of the domi-
nant mode TE,, presents a relatively broad maximum, re-
maining below 80%, and therefore the propagation is not
single mode. However, in contrast to circular
waveguides, the second dimension of the rectangular
guide remains as a variable. Taking the best value for
the dimension &, we vary the dimension b, as shown in
Fig. 7(b), and observe that the TE,, mode projection can
approach unity if & is chosen small enough. For this con-
dition the beam propagates through the guide as a single
TE, mode. Of course, the limitation on b is the fraction
of the incident power transmitted through the rectangu-
lar aperture of the waveguide, G. A compromise between
the best dominant mode projection and the maximum
transmitted power needs to be found. For instance, with
a rectangular guide of dimensions 280 um x 130 um, G

1 T

(A+BY?
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I “|'E13 ‘.“..11 '-2-’_,—
0 ":zfi--—"—?:'-:t:.;-'_' et M
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Fig. 6. Mode projection squared (A + B}? of a Gaussian beam
into a circular guide for the indicated modes.
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= 300 um, and (b) the dimengion b varies from 50 to 600 um
with ¢ = 280 um.

is more than 80%, and the mode projection (4, + B,)? of
the beam is more than 98% into the dominant mode TE,j,.
For any given beam size, it is possible to design a rectan-
gular waveguide with very high coupling efficiency into
the dominant mode and simultanecusly a good geometric
transmission of the aperture, as the relative mode projec-
tions are due solely to the relative dimensions of the beam
waist and the waveguide. Because a change in the di-
mensions of the guide affects the cutoff frequency, the fi-
nal size of the waveguide must also take into account the
bandwidth of the THz beam.

We can now apply these principles to experimentally
test for the single propagating TE;, mode. The relative
amplitude spectra of THz pulses propagating through
three different rectangular waveguides are presented in
Fig. 8. The brass waveguides have the following respec-
tive dimensions (e X &); {a) 250 um X 800 um, (b)
250 um ¥ 260 um, and (¢) 250 pum x 125 gm. The cal-
culated cutoff for the lowest-order mode TE,, is 0.6 THz
for the waveguide of Fig. 8(c). For this waveguide the
modal characteristics are shown in Figs. 10 and 11 in Ap-
pendix B. The transmitted spectrum presented in Fig,
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8(a) shows a dramatic interference pattern correspond-
ing to the superposition of several modes during the
propagation. As shown above in Fig. 7, the reduction
of the dimension & of the waveguide leads to reduction
of the amplitude of oscillation [Fig. 8(b)] and even to a
complete disappearance of the oscillations within our
signal-to-noise ratio in Fig. 8(c}. The propagation of the
THz pulse through this waveguide with dimensions
250 pm X 125 um is effectively a single-mode propaga-
tion. Qualitatively, the agreement between the ampli-
tude of the oscillation found in the experimental spectrum
of Fig. 8 and the amplitude obtained with the mode pro-
jections is excellent. The oscillations in Figs. 8(a), 8(b),

08| (a)
% N
2
5 06| ]
£ | ! 1
< E b
2oa} | Y 2 ]
©
Q
o

08 | (b) ]

06 1

Relative Amplitude

Relative Amplitude

0 1

2 3 5

Frequency [THz]

Tig. 8. Relative amplitude spectra of a subpicosecond pulse
of THz radiation after propagation through a rectangular
brass waveguide with different sizes of the guide. The dimen-
sions of the guides (a x b) are (a) 260 um X 800 pm, (b)
250 pm % 250 um, and (c) 250 pm ¥ 125 pm. The length of
the guides is 25 mm.
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Fig. 9. Measured THz pulse transmitted through a 25-mm-long,
250-pm X 125-um rectangular brass waveguide,

and 8(c) present modulations of 0.64, (.45, and 0.06, re-
spectively, compared with the theoretical modulations of
0.67, 0.52, and 0.07, respectively. Here, the modulation
is defined as the ratio of the total amplitude of the oscil-
lation to the average value of the spectrum.

Figure 9 presents the measured THz pulse transmitted
through the 25-mm-long, 250-pxm X 125-um waveguide
corresponding to the spectrum of Fig. 8(c). The transmit-
ted pulse shows regular oscillations with some irregular
structure on the trailing edge of the pulse that is due to
water vapor in the path of the THz beam. Although the
pulse has been significantly broadened by the group-
velocity dispersion of the TE; mode, the resulting 13-ps,
1/e pulse width is significantly less than the correspond-
ing 40-ps, 1/e pulse width for the brass circular guide as
shown in Fig. 4. This is due to the difference between
single-mode and multimode propagation in the
waveguides and to the different dimensions.

7. WAVEGUIDE THz-TDS

We have demonstrated, in both theory and experiment,
the feasibility of single-mode excitation of a rectangular
THz waveguide. We now present the theory that enables
the application of this new THz technology to THz-TDS
{Ref. 2) spectroscopic measurements of dielectrics in the
waveguide, which include thin-film and gas measure-
ments. The developed theory obtains equations for the
measurement of the absorption and the dispersion of the
dielectric media.

We now consider the case of waveguides partially filled
with a thin dielectric layer. In Appendix C it is shown
that the absorption coefficient in a layer within the wave-
guide, «, ;, is related to that of the bulk dielectric, @, by

Uy
tgs = fo —, (7)
U,
where the filling factor f is defined as the ratio of the en-

ergy in the layer to the total energy within the guide.
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This expression for the absorption coefficient is general
and applies to any distribution of dielectric in the guide.
In most cases the group velocity in the layer material can
be approximate to the phase velocity ¢/n;, where n, is the
refractive index of the layer material. For a thin layer,
the group velocity of the guide is approximately that of
the air-filled waveguide. Using Eqgs. (A8), one obtains
the absorption by propagation through the waveguide
with no conductive loss as

1
1 — (WA )2V

(8)

Gy} = foy

The absorption depends on the wavelength, increasing as
the wavelength approaches the cutoff wavelength. This
enhancement of the bulk absorption of the layer can be
understood by the behavior of the propagating fields near
the cutoff. In a geometrical picture, the waves in the
guide are reflected by the sidewalls of the metal wave-
guide. The closer the wavelength is to the cutoff, the big-
ger the angle is between the wave and the wall. Conse-
quently, the effective length of travel is then increased by
the zigzag path, intensifying the effective absorption in
the guide.'”

To obtain the total loss, we need to add the conductive
loss. For a thin dielectric layer, for which the group ve-
locity is approximately equal to that of an empty guide,
the conductive losses are unchanged by the presence of
the dielectric layer. The total loss is then given by

ayp = gy T oaqg (00 aqy), &)

where a,, is given by our Eq. (8) and aqg and ay are
given by Marcuvitz!! (Eq. 9, page 60, and Eq. 4, page 57,
for a rectangular guide and Eq. 25, page 70, and Eqg. 21,
page 67, for a circular guide).

As an example for the rectangular waveguide, we can
apply the filling factor of the mode TE, to obtain the ab-
sorption coefficient in the guide that is due to an absor-
bent layer. The filling factors for rectangular and circu-
lar waveguides with a thin dielectric layer adjacent to
their surfaces have been evaluated and are given in Ap-
pendix C. By combining Eqgs. (8) and (C10), we obtain

1 ay Al

S E—— - Ao
?1? [1 — (?\U/AL.)Z]UQ b TR {or (YTM) (

@10

The first part is due to the absorption from the layer it-
self, and the second part is due to the conductive loss in
the metal of the guide.

For a thin layer in the waveguide of length L, the de-
tected amplitude spectrum E,w) is proportional to
exp{—apL), whereas the reference amplitude spectrum
E opty{w) for the air-filled waveguide is proportional to
exp| —arglor amyil]. The ratio of the amplitude spec-
trum of the waveguide with the layer to the reference am-
plitude spectrum gives exp{—ea,,L). Finally, with the use
of Eq. {8), the absorption coefficient of the layer a; is ob-
tained from the ratio of the two amplitude spectra F o
and £, by
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1 { Eilw)
ap = ——|1

- (11)
Eempty(w)

Aol 27142

- (—) } In
fL LA,
A. Measurement of the Absorption from a Thin Layer
in a Waveguide
The above result can be compared with traditional meth-
ods, where the layer covers a mirror and where the
change of absorption from the layer is detected. In this
case, with a layer of the same thickness, the amplitude
absorption is given by exp(~o; X 2A!), where the factor 2
is due to the fact that the layer is traveled through twice.
If now we take a guide of length L, the absorption is then
exp(—apl ). For a wavelength much smaller than the
wavelength cutoff, the ratio of the effective lengths is
given by

. agL 1 L
Fug a; x 2A1  2nd b i
This ratio is very sensitive to the index of the layer.
For an index close to unity, I',,, may be much bigger than
1. For example, for a waveguide where L. = 100 mm and
b = 125 um and for a layer with an index n, = 2, T, is
equal to 50. It is possible in this waveguide case to mea-
sure absorption with samples 50 times less absorbent
than is possible with traditional single-layer reflection.
On the contrary, for a high index, Ty, is small, and this
technique is not as effective. However, for the study of
single molecular layers or chains with n;, = 1 this tech-
nique can yield extremely large sensitivity enhance-
ments.

B. Determining the Dielectric Constant of a Thin
Dielectric Layer in the Waveguide

Through comparizon of the phase of the electric field, in
both an air-filled guide and one in which a thin dielectric
layer is present, it is possible to determine the dielectric
constant of the layer. We consider a rectangular wave-
guide with a thin layer adjacent to the waveguide surface
and a polarization of the THz beam ingide the waveguide
orthogonal to the surface of the layer. The phase of the
electric field is determined by the propagation constant of
the guide, such that E(e) = |E(w)exp(~igL). For a
nonabsorbing dielectric, we can then compare a sample
and a reference spectrum to obtain

/ | [ 27 2
arg| ———| = (Bumpy ~ BIL = -

‘-Eemptys ;?\g,empty )\g,ir

(13)
where arg represents the argument {(angle) of the complex
ratio. Marcuvitz has presented the following approxi-
mate expression for A, for the dominant {approximately
TE,y) mode!®:

E,

Ay
ot Ty 127120
1 Ao

(14

e

where ¢ is the relative dielectrie constant of the layer,
and b are the dimensions of the rectangular guide, and A/
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is the dielectric thickness. With this result an expansion
in terms of the dielectrie thickness leads to the first-order
expression

w(le — 1)
,Bempty - B = 2 1/2Al' (15)

Ao
b)\U ]. - ‘l“z““‘

a/

This result, together with Eq. (13}, leads to an expression
for the relative dielectric constant of the layer:

1
Aogh { A h?

&= 1z 16)

E(w)
Eemply(a’)

1 + ar —
g 7LAl 2

8. CONCLUSIONS

We have demonstrated the efficacy of quasi-optical tech-
niques to efficiently couple freely propagating pulses of
THz radiation into submillimeter circular and rectangu-
lar waveguides with typical diameters and edge dimen-
sions of 300 um and with lengths of 25 mm. We observed
low-loss, very dispersive propagation through these
waveguides over the frequency band from 0.65 to 3.5 THz
with frequency-dependent group velocities v, ranging
from ¢/4 to ¢ and phase velocities v, from 4¢ to ¢. The
low loss, inversely proportional to the square root of the
conductivity, would enable propagation lengths much
longer than the previous 25-mm lengths to be demon-
strated. Here, the experimental limitation is the avail-
ability of longer lengths of precision metal tubing to be
used as waveguides.

Even though our input spectrum overlaps the cutoff
frequencies of more than 25 waveguide modes, the lin-
early polarized incoming THz pulses significantly couple
only into five modes for the circular waveguides and four
modes for the rectangular waveguides. Using classical
waveguide theory, we obtain the coupling coefficients into
the modes of the waveguides for the incoming focused
THz beam, where the propagation of the THz pulse
through the waveguide is described as a linear superposi-
tion of the coupled propagating modes, each with a unique
complex propagation vector. We demonstrate that this
superposition of the propagating modes explains in detail
all of the observed features of the THz pulse emerging
from the waveguide.

Through our understanding of the coupling of the in-
coming linearly polarized, focused THz pulse with a
plane-wave phase front to the waveguide modes, we show
that it is possible to design a rectangular waveguide for
which the THz pulse couples to only a single mode of the
waveguide. We have experimentally demonstrated this
conclusion by observing single-mode propagation over the
frequency range from 0.7 to 4 THz for an optimal
250-um X 125-um rectangular brass waveguide 25 mm
long. These results are significant in that they enable
THz pulse propagation in the waveguide with a single-
valued, analytic propagation vector.

Such single-mode propagation makes possible the ap-
plication of waveguide THz time-domain spectroscopy
(THz-TDS). To facilitate these applications, we have de-
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veloped a waveguide theory for thin-film measurements
and have shown that an enhancement of measurement
sensitivity of up to 50 times that of a comparative single-
pass reflective measurement is feasible. The waveguide
THz-TDS technique alsc appears to be ideal for the THz
{far-infrared} study of precious or hazardous gases, since
suitable spectra should be possible with nanogram quan-
tities of material.

APPENDIX A: FIELDS IN THE WAVEGUIDE

To clarify the notation used in this paper and to facilitate
comparison with the many different treatments in the lit-
erature, we present the formulation used for our calcula-
tions of the waveguide coupling and propagation dis-
cussed in the main body of this paper. Here, we define
the propagating electric (E) and magnetic (H) fields of the
wave in the form

E = Ej(x, y)expliwt — yz),
H = Hy{x, y)exp(iwt — yz). (A1)

The complex propagation constant v can be defined in
terms of the real wave propagation constant 8 and at-
tenuation constant « by

y=a+ if. (A2)

It is convenient to introduce the waveguide and cutoff
wavelengths A, and A, respectively, through

27 27 BNk
ﬁ:)=—1—(_} , {A3)
N A B

where A is the wavelength in the dielectric medium filling
the guide, with index of refraction n.

We separate the electric and magnetic fields of the
propagating wave into transverse and longitudinal com-
ponents E,, H, and E,, H,, respectively. The solutions
of Egs. (A1) that satisfy the boundary conditions comprise
the transverse electric (TE) modes, with E, = O, and the
transverse magnetic (TM) modes, with H, The
transverse components of E and H are related as'?

Zy A
ZT8 = 2 ¢ ¢or TE,

ZTEHI‘I- k w ETE
nd A
A

2™ k< EMM, 2™ - 0T for TM,  (A4)
Tl.d }\H

which defines the characteristic impedance of the two
types of solutions, where Z; = Jjuo/ey is the impedance
of the vacuum k is the unit vector in the longitudinal (z)
direction. The modes are normalized according to

f L\E,pwds _ 7 f f | H,, |24

:zjjk-(waHﬂ)dS-l (A5)
8

There are an infinite number of solutions of the wave
equation, each of type TE or TM, corresponding to a par-
ticular cutoff wavelength. In the general case, each TE
or TM mode can be identified by an integer number p.
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In practical examples, such as rectangular and circular
guides, p refers to a couple of identifying integers:
p = (m, n). However, for conciseness we often use the
notation p to also include the distinction between TE and
T™ modes.

The TE and TM modes form a complete and orthogonal
basis set for describing the electromagnetic fields within
the waveguide.'>™® We can therefore determine a unique
expansion of the incoming electromagnetic field in terms
of the normal modes. Each mode propagates freely in the
guide, without interacting with the other modes, with a
constant cross section, and with the complex propagation
constant y, responsible for the absorption and the disper-
sion of the mode. Assuming that the amplitude of the
transverse electric field for the pth mode is A, E,, for the
wave propagating in the +z direction and B E,, for that
in the —z direction, the field E of the propagating wave in
the waveguide is given by

E = expliot) >, E,,
P
bt [Apexp(iyp . Z) + BPEXPU’;J : Z)J

+ KE, [A,exp(—y, + 2} ~ Byexply, 2)]. (A6)

The amplitudes 4, and B, of each mode are obtained by
projection of the transverse components of the incoming
eleciromagnetic field over the transverse pattern of the

modes >3
A, + B, = J‘j (B, - E})d3
5
A, - B, = ijj (H, - Hf}:}d& (A7)
8

where § denotes an integration over the waveguide cross
seetion. We can now analyze separately the propagation
of the modes. Simple expressions for the phase velocity
v, and the group velocity v, of a particular mode in the
absence of dispersion of the dielectric medium in the

guide are given by
v L2112

[ A
f‘TT v ]
- ” A

(A8)

LA

<

with v = 1/Ven. Equations (A8) lead to the simple rela-
tion v,u, = v?, for which, in an empty guide, v, is
greater than c, while v, is naturally less than e. The
phase and group velocities for rectangular and circular
waveguides are presented below in Figs. 11(b} and 13(b),
respectively.

At the input or the output of the waveguide, the change
in impedance between free space and the guide results
in reflections. The amplitude reflection and transmiss-
ion coefficients are defined by r = B/(A + B} and
t = A/(A + B). The amplitude and power reflection co-
efficients at the input, i, and R, and at the output " out
and R, for the TE and TM modes are given by!?

Z(w)y — Zy

rin(w) = Wruut(w] = m’
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Rin = Rnut = i"inrz = ‘rqu’JQ; (Ag)

where Z{w) refers to ZEE or ZEM as defined in Eqgs. (A4)
for the TE and TM modes, respectively. The amplitude
and power transmission coefficients are also given by!®

2Z(w) 2Z,
tilw) = ————, ¢t - —
@ = T Z(w) i) = )
Zy Z{w)
T = mtﬁn, Tout = WZthut. (A10)

APPENDIX B: RECTANGULAR AND
CIRCULAR WAVEGUIDES

The analytic expressions for the modes of rectangular and
circular metallic hollow waveguides can be found in
Marcuvitz.!! The electric field patterns for the dominant
three modes in a rectangular guide for a linearly polar-
ized, plane-wave Gaussian input beam are presented in
Fig. 10. For the rectangular waveguide with horizontal
and vertical dimensions a X 4, the cutoff wavelength is
the same for both the TE,,, and TM,,, modes and is de-
termined by the two integers m and n:

1
Ae = Tm % p 2R (B1)
m +(_
2a 2b,

However, the characteristic impedances of the TE and
TM modes are different and are given by

o2 /(2

1/2

3

iy a)\(‘f
Z ; Y V27172

Z™ _ 20,4 _ 7) } : (B2)
nyg ti\c;

where ny is the refractive index of the bulk medium in the
waveguide, and X is the wavelength in the bulk medium.

The absorption coefficients of the TE,,, and TM,,,
modes for a rectangular waveguide that are due to the fi-

TE

30

Fig. 10. Electric field patterns of the dominant three modes in a
rectangular waveguide.
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Fig. 11. (a) Field absorption and (b} phase and group velocities
for the dominant three modes in the air-filled 250-zm
> 125-pm rectangular brass waveguide.

Fig. 12. Electric field patterns of the dominant three modes in a
circular waveguide.

" nite conduectivity of the metal are given by Marcuvitz!?

(Eq. 9, page 60, and Eq. 4, page 57). The absorption and
the phase and group velocities of the dominant three
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modes for a 250-um X 125-xm brass waveguide are pre-
sented in Figs. 11(a) and 11(b), respectively.

For a circular waveguide, the cutoff frequencies of the
TE,,, and TM,,, modes are determined by the nth roots
of the mth-order Bessel function and of the derivative of
the mth-order Bessel function.!! The characteristic im-
pedances are the same as those for the rectangular guide
[Eqgs. (A4)]. The electric field patterns of the dominant
three modes in a circular guide, for a linearly polarized,
plane-wave Gaussian input beam, are pregented in Fig.
12.

The absorption of a circular waveguide that is due to
the finite conductivity of the metal has been calculated by
using the expression given by Marcuvitz'! (Eq. 25, page
70, and Eq. 21, page 67). The absorption coefficient and
the phase and group velocities of the dominant three
modes for a 240-um-diameter stainless-steel waveguide
are presented in Figs. 13(a) and 13(b}, respectively.

APPENDIX C: ABSORPTION FROM A
LAYER WITH THE WAVEGUIDE

We consider the absorption of waveguides partially filled
with a thin dielectric layer by using Poynting’s theorem,
which states the conservation of electromagnetic energy

as“
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Fig. 13. (a) Field absorption and (b} phase and group velocities
for the dominant three modes in a 240-um-diameter stainless-
steel waveguide.
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dW 1 W w W
= —— 1)

dz v, ot Qu,

where W is the total energy per unit length, defined by in-
tegration of the energy density over the cross section of
the waveguide, v, is the group velocity, and @ is defined
by analogy to oscillating circuits. To explain &, we can
rewrite Eqg. (C1) by using the reduced time ¢* = ¢
— 2/u, to obtain

aW w

at* e W ©2
The factor @ corresponds to the energy loss in an elemen-
tary cell traveling in the guide with the same velocity v,
as the flow of energy, so that the energy in the cell de-
creases as exp(—ot*/Q). If W, and W, are defined as the
energy per unit length in a cross section of the layer and
the empty remaining space of the waveguide, respec-
tively, the total energy Wis givenby W = W, + W,. We
write the conservation of energy, for both the layer and
the empty space, as

(?W[ w
v,— = —W, — ri oW, + rgW,, (C3}
g oz Qg‘[ 1 12V F 21¥ g
aw
Ug f - F12W,g - FQIW s (04)

where i, and ry; are the energy-transfer rates hetween
the layer and the empty space and @, , is the energy loss
in the layer within the waveguide. Summing Egs. (C3)
and (C4) and defining the filling factor f such that W,
= fW, we obtain

W [ wf
v = ——W,= —W= -2a_,,W. (C5
# az le,! Qg,l B

In Eq. (C5) we have defined the absorption constant o,
of the waveguide so that W decreases as exp(—2ay;2).
We also define the bulk absorption for the material in the
layer by «; so that the energy in the bulk of the material
decreases as exp(—2w2). Applying Poynting’s theorem
to the bulk of the material constituting the layer, where
the energy flow in the bulk material travels with the ve-
locity v, , one obtains a relationship between &, and a;:

aW w - W c
= ——W=-2 . 6
[24] PR QI [4 417 ( )
Assuming that @, = @, then leads to the relationship
Uy
dpp = fa’,{;_. (07)

g

We have calculated expressions for the filling factor of a
thin dielectric layer on the surface of rectangular and cir-
cular air-filled waveguides. For a rectangular guide of
dimensions @ X b with a dielectric layer of thickness A/
and refractive index n, on the side of dimension a, the fill-
ing factors f,,, and g,,, for the TE,, and TM,,, modes,
respectively, are
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Fmn = Wre  n? 8a% b’
WI,TM 1 n2}\f Al C
= —_— 8
Emn ™ Woe  nl 267 b ©®
where
1 ifp=90 . Co
(SP_Q i p %0 with p =m or n. (C9

For example, the filling factor of the TE,; mode is

A C10}
= —, (C1
fll) bniz

corresponding to the ratio of the cross-section area of the
layer to the total cross-section area of the guide, multi-
plied by the reciprocal of the squared index of the layer,
which is proportional to the energy density in the layer.
For an air-filled circular guide of radius a and a layer of
thickness Al at the surface of the guide, consideration of
the energy densities in the guide and the layer leads to
the TE and TM filling factors, f,,, and g,,, , respectively;

1 7T, Al

fmn = n_?m—'_;s
maZ !
S| JL(2main.) 12Al
Emn = ;,,E 1 (Z2main,) ?'
(C11)
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