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Incidence-angle selection and spatial reshaping of terahertz
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We present spatially resolved measurements of the electric field of terahertz pulses undergoing optical tun-
neling that show strong pulse reshaping in both time and space. This reshaping is shown to be a resuit of
frequency and incidence-angle filtering of the complex amplitude of the plane-wave basis set that makes up

the pulse. This filtering leads to spreading of the pulse in the time and space dimensions, as expected from
linear dispersion theory. Measurement of the pulse shape after transmission through an optical tunneling
barrier permits direct determination of the complex system transfer function in two dimensions. The transfer
function, measured over both thin and thick barrier limits, contains a complete description of the tunneling
barrier system from which the phase and loss times can be directly determined. © 2001 Optical Society of

America
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The question of optical tunneling, originally ad-
dressed by Brillouin and Sommerfeld,’ has received
considerable attention in the scientific literature, both
historically and currently, specifically in terms of
the time scale associated with tunneling phenomena.
Since optical tunneling results in pulse reshaping, it is
difficult to directly assign a tunneling time for strongly
reshaped pulses.” Hence, two time scales have been
proposed for tunneling®. A loss time describes pulse
attenuation, and a phase time describes temporal
shifts or reshaping.

Here we extend previous investigations*® of optical
tunneling with near-single-cycle pulses with extremely
broad bandwidths to measure the effect of spatial as
well as temporal pulse reshaping. These previous ex-
periments reached opposing conclusions on whether
light propagation is causal. Here we show that as
temporal pulse reshaping makes it impossible to assign
a time to tunneling,” similarly, spatial pulse reshaping
makes it impossible to assign a well-defined path to
spatially localized wave packets. By direct coherent
measurement of the pulse’s electric field, we directly
measure the complex propagation time.

The terahertz (THz) system® is similar to that used
in previous investigations® and is shown schematically
in Fig. 1{a). Silicon wedges cut so that the incidence
angle, 6, of the terahertz (THz) pulse on the silicon--air
interface is past the critical angle are used to create the
optical tunneling barrier, which is placed at a waist of
the THz beam to ensure a nearly planar phase front.
Unlike in the previous investigations, the THz pulse
is measured with 1-mm apatial resolution and subpi-
cosecond temporal resolution by a fiber-coupled 50-um
dipole antenna structure that can be translated along
the x direction. No colleciion lens is used on the de-
tection dipole, which permits high spatial resolution,
thereby reducing the bandwidth of the THz system.
In these investigations the wedge separation along the
cylinder axis, A, and the angle of the systems’s optical
axis to the cylinder axis, B, are adjustable with reso-
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lutions of less than 5 wm and 0.5°, respectively; only
the wedge closest to the paraboloidal mirror was moved
to change A. The angle between the THz beam’s op-
tical axis (2 axis) and the cylinder axis, 3, is 10.0°
so the angle of incidence on the interior wedge face is
6 = 17.1°, 0.1° off the critical angle of 17.0°.
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Fig. 1. (a) Experimental schematic of a fiber-coupled THz
receiver (FCTR). The lines represent the propagation
path (dashed line, A = 0 um; solid line, A = 1000 am).
Contour plots: (b) Ey(x, ¢) with 15-pA contour spacing,
(¢} Er(x, t) with 5-pA spacing.
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The time-resclved THz pulse was measured at 26
positions along the x direction spaced 1 mm apart,
vielding a two-dimensional slice of the eylindrically
symmetric THz beam’s electric field as a function of
x position and time. Contour plots of the measured
electric field amplitude are shown in Fig. 1(b) for the
reference pulse, Ey(x, #), with no gap (A = 0), and in
Fig. 1(e} for the pulse that has tunneled through an
optical barrier, Er(x, t), of width A = 1000 um. The
peak of the pulse with A = 1000 um, Er(x, £), shows
a shift of —1.79 ps relative to Ey(x, t), observed previ-
ously.*> The peak also shifts a distance I = 2.8 mm
spatially in the positive x direction, propagating
through less high-index material than the reference
pulse, opposite to what was assumed in.an earlier
study that claimed superluminal, noncausal propaga-
tion.* The tilt of the cylinder axis results in a lateral
shift artifact of 152 um for A = 1000 gm, below the
spatial resolution of our measurement. The spatial
shift is due to the refraction of the plane waves that
malke up the pulse, incident at various angles. Some
of the angles are complex.® This shift is analogous
to the Goos—Hénchen shift that occurs during total
internal reflection of a spatially bounded beam, which
1s dependent on the spatial and spectral profiles of the
THz pulse. The shift at the center frequency of the
THz pulse is calculated” to be 4.4 mm, in reasonable
agreement with the measurement.

Shifting pulse peaks or centroids is not sufficient for
rigorous determination of propagation times.? Thus,
to analyze the propagation of time- and spatially
dependent pulses tunneling through an optical bar-
rier, we use linear dispersion theory® by expanding
the pulse into a superposition of plane waves. The
frequency-dependent complex amplitude at a given
gpatial position, E{w, x), is obtained through the
Fourier transform of the measured THz pulse, E(x, #).
The spatially localized THz beam is composed of
a summation of plane waves corresponding to a
distribution of incidence angles, each with a given
amplitude and phase relationship. The angle of each
plane-wave component relative to the beam-propa-
gation axis inside the silicon is” ¢ = arctan(k,/k,),
where k, is determined by k.2 = k% — k.2, Here
k= |k| = wn/c for a given frequency, n is the refrac-
tive index of silicon, w is the angular frequency, and
¢ is the speed of light. For our geometry, ¢ << 1, so
¢ =k,/k, =k,/k, and the actual angle of incidence on
the gap forming the tunneling barrier is ¢ — ¢, with
9 = 17.1°, such that negative values of ¢ correspond
to larger incidence angles. The complex amplitude of
each plane-wave component of the bounded beam is
obtained by a second Fourier transform:

E(k,, wp) =[ E(r, wolexp(—ik.x)dx, (1)

where the value of b, determines the angle of incidence,
¢ =k.c/nw. The two Fourier transforms convert the
temporally and spatially localized THz pulse into a ba-
sis set of plane waves with propagation vectors in the
%% plane. Although they are not shown, the spatially
resolved pulses shown in Figs. 1(b) and 1(c) are mea-

sured to have planar phase fronts, as expected from the
experimental configuration, in which a beam waist is
placed at the optical tunneling barrier with increasing
diameter with wavelength.

The relative amplitude of the plane-wave compo-
nents making up the reference pulse, [Ep(d, o), is
shown in Fig. 2(a) and was obtained from Ey(x, t) of
Fig. 1(b). The ¢ axis assumes a medium of index n =
3.42 to illustrate the angular spread of incidence an-
gles of the bounded THz beam incident on the tunneling
barrier. There is a small experimental artifact in the
measurement of |Eq(¢, w)| that is due to the limited
experimental range of 25 mm. The amplitude distri-
bution of the THz pulse with A = 1000 um, |Er (¢, o),
is shown in Fig. 2(b). The peak spectral component of
IEp(¢, w)| has shifted from 0.32 to 0.21 THz because
of the decay of the evanescent waves within the gap
with a characteristic amplitude attenuation length, L,
proportional to wavelength.® In addition to spectral
reshaping along the o axis in Fig. 2(b), the amplitude
spectrum also is reshaped along the ¢ axis. Physi-
cally the broadening is due to the rapid change of L
as the incident plane waves exceed the critical angle.
This changing L results in a change in propagation di-
rection for the pulse propagated through the barrier as
observed previously at optical frequencies® and alse in
the spatial broadening that can be seen in Figs. 1(b)
and 1(c).

Although the barrier-traversal time cannot be
determined directly from pulse measurements,? the
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Fig. 2. (a) Normalized |Eo(é, w)l, A = 0 pum.

(b) |Er(¢, w)|, & = 1000 wm normalized to |Eo(¢, «)l.
The contour line spacing is 0.05, and the vertical line is 4,.
(c) |H(¢, w)l. The dashed lines are constant ¢ values
of Fig. 3, and the dotted curve represents the thick—thin
barrier houndary.




1902  OPTICS LETTERS / Vol. 26, No. 23 / December 1, 2001
11 ' ‘ ; in Fig. 3. The magnitude of the measured transfer
N\ (a) function, Fig. 3(a), falls exponentially with increasing
— oo frequency and depends strongly on ¢. The slopes
z %i‘“ e directly yield loss I1);imes 7. of 1.4, 2.4, and 3.4 ps for
= N 0.5 degrees %A ¢ =-015°, ¢ = 0°, and ¢ = +0.157 respecti.vely.
014 | & Odegrees - ] H(w) shows a linear phase shift between the signal
+ +0.15 degrees 2 J and reference pulses [Fig. 3(b)], with a negative siope
0 T —= corresponding to a shift forward in time, as observed
— 2] (b} | in Fig. 1. The slopes give the phase times of the
- system, o = —1.25, —1.18, —1.06(x0.15ps) for
= ¢ =—0.15° 0°, +0.15°. The phase times are of the
= 61 ) same order as the measured peak shift of —1.79 ps.
2|1 E)OHLZf;g;ees These loss and phase times are analogous to those
®.10] | # +0.15 degrees measured previously by measurement of beam-angie
12 , ‘ . ; ! divergence with cw optical frequencies® but are deter-
¢ 02 04 06 08 10 mined directly from phase-coherent data over a broad
Frequency {THz) spectral range. For the value of A = 1000 wm and the
Fig. 3. (a) Semilog plot of |H (4, w)| and (b) linear plot of  frequency spectrum measured here, we do not observe

®(d, w) for ¢ =—0.15°, 0°, +0.15°,

transfer function contains a complete description of
pulse propagation through the wedge—gap system as
a whole® This description permits direct determi-
nation of the propagation time through the system
for each plane-wave component. The experimentally
measured complex transfer function, H(¢, w), is

Er(d,w)

Eold.w) Hi¢,0)=|H{¢,0)lexpli®P(d,w)]. (2)
The complex transfer function, H{¢, o), is determined
over both the thick (A => L) and the thin (A << L)
barrier Hmits, and the magnitude is shown in Fig. 2{(c).
The dotted curve is a guide for the eye.

The complex traversal time, =, = 74 + i77, is de-
termined from H{¢, «) and describes propagation of
the THz pulse through the wedge—gap system.® The
complex traversal time is given by the phase time, 74,
and aloss time, 7. The phase time corresponds to the
group velocity, and the interpretation of the loss time
shift that is due to the pulse reshaping®

b TL:,M“L)'. (3)

dew Jdw

Tp =

The amplitudes and phase relationships of H{¢, w)
as a function of frequency for three values of ¢, cor-
responding to the dashed lines in Fig. 2(c), are shown

saturation of the phase times.®
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