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We report an experimental and theoretical study of whispering-gallery-mode propagation of subpicosecond

terahertz pulses in a dielectric cylinder coupled by means of a dielectric slab waveguide.

We observed repeti-

tive cavity pulses from this structure for which the output pulse shapes were determined by the multi-

whispering-gallery-mode coupling into the cylinder.

A coupled-mode theory derived for this cylindrical system

and coupling structure gives reasonably good agreement with the experiment in both the frequency and time

domains. © 2003 Optical Society of America

OCIS codes: 230.0230, 250.5530, 260.2110, 320.5390, 320.7090.

1. INTRODUCTION

The term whispering-gallery mode (WGM) describes the
electromagnetic wave that circulates around the inner
surface of a dielectric sphere or cylinder as the result of
total internal reflection.! With size flexibility, mechani-
cal stability, adaptability to integrated circuits, and very
high @ value, WGM resonators are widely used for basic
research and for applications.?™'2 At millimeter wave-
lengths, conventional cylindrical dielectric resonators
that operate in their TE or TM modes have quite small
dimensions, and therefore are difficult to machine. Also,
their @ factors are strongly reduced.’> WGM resonators,
however, can overcome this serious defect, and are hence
very suitable for millimeter-wavelength integrated cir-
cuits. Consequently, WGM resonators have been used
for frequency filters? and power combiners® in millimeter-
wavelength integrated circuits. In the optical range, the
WGM resonator is usually a dielectric sphere.*1° The
high @ value guarantees the building up of the electro-
magnetic field of a certain frequency, which is very impor-
tant in the applications of frequency selection,?
spectroscopy,” nonlinear optics,® the microlaser cavity,’
and parameter detection.® At telecommunication wave-
lengths, similar microring resonators have been reported
for frequency filtering and modulation.’

A WGM resonator is usually excited by the external
evanescent fields of a coupler, which can be a dielectric
prism,*® an optical fiber,”!® microstrip transmission
lines,!t or a dielectric waveguide.'> When the electro-
magnetic wave of the coupler passes through the coupler—
resonator contact region, part of the field is coupled into
the resonator and propagates around its inner surface.
In the case of a cw coupling source, the coherence condi-
tion must be met for constructive interference, and only a
set of discrete frequencies can satisfy this condition.
These resonant frequencies are determined by the dimen-
sions and coupling condition of the dielectric resonator
and the polarization of the coupling source.

In recent years, terahertz (THz) technology has at-
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tracted considerable research effort, and has become a
bridge connecting microwave technology at the low-
frequency end with optical technology at the high-
frequency end. Many research topics in these two fre-
quency regions have been expanded to THz range, one of
which is guided-wave propagation. Recent progress in
THz waveguide studies'*!” has paved the way for
guided-wave propagation and circuit interconnection of
THz radiation. The advancing technology and expanding
applications of THz radiation will soon require the use of
the THz-WGM resonator.

Unlike a cw laser source, a beam of subpicosecond THz
pulses consists of a continuous range of frequency compo-
nents. The standard THz-time-domain spectroscopy
system!® is able to record both the amplitude and phase
information of such pulses. Although most of the related
optical WGM studies use a cw laser, a time-resolved mea-
surement of WGM pulse propagation in spheres has been
demonstrated by use of a pulsed optical laser as the cou-
pling source.’® On the basis of techniques developed in
THz waveguide studies,'*"!” we have reported the first
observation of WGM propagation of THz pulses.?’ Here
we give a detailed explanation of our experiment and the
theoretical analysis of the dielectric-slab—cylinder cou-
pling structure reported in Ref. 20. The experiment
shows strong coupling between the dielectric-slab wave-
guide and the cylinder and demonstrates the propagation
properties of the THz-WGM pulse. We give the mode so-
lutions for this system and derive the coupled-mode equa-
tions (CMEs) to analyze our slab—cylinder coupling struc-
ture. The theory explains the experiment well and can
be used for related future studies.

2. EXPERIMENT

The optoelectronic THz system used for our experiment is
shown in Fig. 1. The THz pulse is generated by a copla-
nar stripline biased under high voltage and excited by la-
ser pulses from a Ti:sapphire mode-locked laser. Two pa-
raboloidal mirrors are used for steering and collimating
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the THz beam. For a typical THz-time-domain spectros-
copy measurement, the sample under investigation is
placed between the two paraboloidal mirrors. In our
case, the sample is a slab—cylinder coupling structure
along with the focusing lenses and sandwiching metal
plates for the slab, which is shown enlarged in Fig. 2.
The slab waveguide and the cylinder are both made of
high-resistivity silicon with a refractive index ng;
= 3.417'8 and dimensions of 17.5 mm (length, z) by 100
um (thickness, y) by 12.5 mm (height, x) and 5 mm (diam-
eter) by 10 mm (height, x), respectively. The two alumi-
num sandwiching plates are both 18 mm (length, z) by 25
mm (height, x), each having a window of 3.2 mm (length,
z) by 17 mm (height, x) in the middle. To place the cyl-
inder in contact with the slab waveguide, the window of
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laser pulse laser pulse

Fig. 1. Experimental setup.
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the coupling plate is carefully milled out using a 6.2-mm
ball-end bit. A 5-mm-diameter aperture is placed before
the left-hand lens to confine the incoming beam. To
eliminate the effects of water vapor, the whole system is
enclosed in an airtight box that is purged and kept at a
positive pressure by dry air during data collection.

The incoming y-polarized THz pulse is coupled in and
out of the coupling structure by the two cylindrical lenses.
In the window area, the THz pulse propagates in the dis-
persive TM, mode of the dielectric-slab waveguide.'®> On
the left and right sides of the coupling structure, the two
aluminum plates and the sandwiched silicon slab form
the parallel-metal-plate waveguide. If there is no re-
sidual air between the slab and the metal plates, the THz
pulse will propagate in the TEM mode with no frequency
chirp and no group-velocity dispersion.'® In the experi-
ment it is difficult to obtain intimate contact between the
silicon slab and the metal plates, so that an air gap of a
few micrometers may exist between the silicon slab and
the metal plates. In this case a pure TEM mode does not
exist in the metal guide. However, since the coupling to
the cylinder occurs only in the window area (the slab-
waveguide region), in the theoretical section we need fo-
cus only on the modes of the slab waveguide.

When the cylinder is brought into contact with the slab,
part of the THz pulse is coupled into the cylinder as a su-
perposition of WGM modes and propagates around the
cylinder. A cavity pulse train is obtained as the coupling
occurs each time the circulating THz-WGM pulse reaches
the contact region and part of it is coupled back to the
slab waveguide and detected as a cavity pulse.

3. EXPERIMENTAL RESULTS

The time-domain output pulse of the above system is
shown in Figs. 3(a) and 3(b) for the reference scan (with-
out cylinder) and the sample scan (with cylinder in con-
tact with silicon slab), respectively. As described in Ref.
20, pulses la and 1b are the main transmitted pulses,
while 2a, 2b, 3a, and 3b are the reflection pulses from the
cylindrical lenses. The first two cavity pulses are de-
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Fig. 3. Measured time domain pulses: (a) reference scan without cylinder, (b) sample scan with the cylinder in contact with the slab

waveguide.
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Fig. 4. (a) Main transmitted pulses of Fig. 3 and, (b) their cor-
responding spectra. The dashed curves represent the reference
scan, the open circles represent the sample scan, and the solid
curves are the calculation results for the sample scan.

noted 4b and 5b, which are identified by their correspond-
ing time delays relative to pulse 1b.2°

Figure 4(a) shows magnifications of Figs. 3(a) and 3(b)
for the main transmitted pulses 1a and 1b. Figure 4(b)
shows their corresponding spectra. The oscillations in
their spectra are a result of the reflection between the pla-
nar surfaces of the cylindrical lenses and the entrance
and exit surfaces of the silicon slab, which are separated
by approximately 0.7 mm; the spectra show the single-
mode propagation of pulses 1la and 1b. The main trans-
mitted pulse retains most of its amplitude and oscillation
features when the cylinder is brought into contact with
the slab waveguide. However, with the cylinder in con-
tact, the pulse loses part of its energy at lower frequen-
cies, indicating strong coupling between the slab and the
cylinder. This can also be seen in the time domain shown
in Fig. 3. The small oscillations in the leading part of
pulse la correspond to the lower-frequency components
having the fastest group velocities of the slab TM,
mode.!’® These oscillations almost disappear when the
cylinder is brought into contact, as most of these fre-
quency components are then coupled into the cylinder.

Figures 5(a) and 5(b) are magnifications of Fig. 3 for
the first and the second cavity pulses, respectively. Their
respective spectra are shown in Figs. 6(a) and 6(b). Al-
though the incoming THz pulse propagates in the single
TM, mode in the slab waveguide, the spectra of the cavity
pulses show oscillations which indicate the multimode
feature of the THz-WGM pulse.!*?° This is due to the
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situation that the single slab TM, mode is coupled into
several WGMs of the cylinder.

4. COUPLED-MODE EQUATIONS (CMEs)

We now derive the CMEs for the slab—cylinder coupling
system shown in Fig. 7. We assume that the system is
uniform in the x direction so that the problem simplifies
to two dimensions. Consider two sets of frequency-
domain field solutions (E;, H;) and (E,, Hy) in two dif-
ferent dielectric media ¢,(r, #) and e4(r, #) that satisfy
Maxwell’s equations and the boundary conditions, and
are located in the same physical space as Fig. 7. Here,
the field quantities contain the implicit time dependence
exp(—iwt) and £1(r, 0) and e,5(r, 0) represent the spatial
distribution of relative permittivities for the two media.
From the vector identities and Maxwell’s equations, it is
easy to obtain the following relation?!~23;

V.(E, x H,— E, x H))

. €o
=ik —(eg —&1)E; - Ey, (D
Mo

where £ is the free-space wave number and €, and u, are
the permittivity and permeability of free space, respec-
tively. The above relation is derived directly from Max-
well’s equations and is accurate for any two sets of field
solutions. If we multiply both sides of Eq. (1) by » and
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Fig. 5. Output pulses for (a) the first and, (b) the second cavity

pulses (4b and 5b, respectively). The solid curves are calcula-
tion results and the open circles represent the experiment.
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Fig. 6. Spectra of (a) the first and (b) the second cavity pulses
(4b and 5b, respectively). The heavy curves are calculation re-
sults and the light curves with open circles represent the experi-
ment.
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Fig. 7. Coordinate system of the slab—cylinder coupling struc-
ture.

integrate along the r direction, in cylindrical coordinates
we obtain the so-called reciprocity theorem?425:

d (= .
- f (El X H2 - E2 X Hl) - Odr
dé Jo

.
= ik \/—Of (69 — £)E; - Eyrdr, (2)
Mo JO
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where the caret " over #indicates a unit vector. Note that
this exact relationship differs slightly from the previous
approximate form.?*2

We now apply this relation to our slab—cylinder system
to derive the CMEs. It should be understood that Eq. (2)
is valid for any solution of the slab and cylinder and for a
linear superposition of such solutions. We use the sub-
scripts s and ¢ to indicate the isolated slab and cylinder
systems, respectively, and capital 7 to indicate the
coupled slab—cylinder system as a whole. As shown in
Fig. 7, for the isolated cylinder system, the spatial rela-
tive permittivity is

€ inside cylinder,
g(r, ) = [1 outside cylinder. ®)
For the isolated slab system, this function is
€, inside slab,
gy(r, 0) = {1 outside slab. @

In Eqgs. (3) and (4), ¢, and ¢, are constants and represent
the relative permittivities of the dielectric cylinder and
slab, respectively. For the coupled slab—cylinder system,
the spatial relative permittivity is

€ inside cylinder,
ep(r, 0) = 4 € inside slab, (5)
1 in air.

Corresponding to the spatial relative permittivities
shown in Egs. (3)—(5), the field solutions are (E,, H,),
(E,, Hy), and (Ep, Hy), respectively. Note that the first
two solutions are known (see Appendix A). The purpose
of this section is to give a modal solution for the third one.
We first consider the coupling between a single slab mode
and a single cylinder mode. In cylindrical coordinates,
we form the total field for the coupled system by the
modal expansion of the two isolated systems as?>%*

Ex(r, 0) = as(a)[Eg(r, 0) + i?)Ef(r, 0)
er

+ aC(O)[EZ(r, 0) + iéEf(r, 9)}, (6a)
er

Hy(r, ) = a (0)[H(r, 6) + 6HXr, 0)]
+ a (O[H(r, ) + 6H!(r, 6)],  (6b)

where the superscripts ¢ and 6 indicate the transverse
and 6 components, respectively, and a,(0) and a,(6) are
the modal amplitudes for the slab and cylinder modes, re-
spectively. Here the Cartesian coordinates of the slab
have been transformed to the cylindrical coordinates of
the cylinder. The goal of this analysis is to solve for a (9)
and a.(#) using the reciprocity relation [Eq. (2)]. For the
two sets of field solutions and relative permittivities re-
quired in this relation, we choose the coupled slab—
cylinder system as one set; for the other set, we choose the
individual isolated system with the fields propagating in
the — 6 direction (these are also the field solutions of the
individual systems; see Appendix B). We obtain from Eq.
(2)
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d (= «
— Er x H —E. x H;) - 4d
defo( T s s ) r

€p *
=ik —f (e — ep)Ep - E_rdr,
Mo JO

d o]
— E; x H - E_
dé’fo( T C c

P
= ik \/—OJ (s, — ep)Ep - Ecrdr, (Tb)
Mo JO

where the superscript — indicates the — 6 direction. Sub-
stituting the corresponding field expressions from Appen-
dix B, we get the following CMEs:

(7a)

x Hy) - 6dr

d
@[PSS( 9)&8(0) + Psc(e)ac(e)] = iCssas(a) + iCscac(a),

(8a)
@[Pcs(ﬁ)as(é’) + P (0)a(0)] = iCay(0) + iC.a.(0),
(8b)
where the coupling coefficients are defined as
1 (= N
P,,(0) = ZJO exp(iAd,,)(e, x h; + e/ x h)) - 6dr,
(9a)
k € (= )
Cpoq(0) = " %L Ag, exp(iAD,,)
¢ ¢ %a 4 9
X le, - e — —epe, rdr, (9b)
er

with the subscripts p,q = s,c;
— &p(r, 0); and the

Agy(r, 0) = eq(r, 0)
phase difference A®, (7, 0)
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= O,r, 6) — P, 0 (where D(r, §) = Bz(r, /) and
®.(r, 0) = 16, with Bthe propagation constant of the slab
mode and [/ the angular propagation constant of the
WGM). The lower case e(e) and h(k) represent the nor-
malized field solutions as shown in Appendix B. Note
that by definition of the normalization factors of relations
(A4) and (A9),

=1 (10)

It is worthwhile to point out that for the slab modes, as
long as the origin of the cylindrical coordinates is away
from the slab, which is true in our case, this is a very good
approximation. In the above, we used specific combina-
tions of the field solutions to derive the CMEs. Although
other combinations could be put into the reciprocity rela-
tion of Eq. (2), the total field has to be used in order to get
the CMEs, and the use of the individual field solutions in
the —6 direction assures that the coupling coefficients
have the simplest forms. In fact, the terms in the
bracket of the left-hand side of Eq. (8a) represent the total
modal amplitude of the slab mode, which is given as the
projection of the total field into the slab mode, while the
right-hand side is the excitation by an equivalent current
induced by the cylinder and the total field. (A detailed
explanation of the induced current can be found in Chap-
ter 22 of Ref. 22.) Eq. (8b) can be explained similarly.

Equations (8a) and (8b) are the CMEs for the coupling
between a single slab mode and a single cylindrical WGM.
For our slab—cylinder system, the modes involved in the
coupling are the single slab TM,, mode and several cylin-
drical WGMs. Following similar procedure, the multi-
mode CMEs can be derived quite generally for the cou-
pling between a single slab TM;, mode and multiple
WGMs as

(a)

fficient Py,

0.03¢

0.02

6 o o
o O o
- O g

Coupling Coefficient Cy, (1/rad)

Coupling Coe

o
]

o
—

10 0 10 20
Angle (degrees)

Fig. 8. Coupling coefficients for the slab TM, mode and WG; mode at 1.0 and 0.5 THz.

0 0 10 20
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The solid curves are real parts and the dashed

curves represent imaginary parts. (a) Cy; at 1 THz. (b) Cy; at 0.5 THz. (¢) Py, at 1 THz. (d) Py; at 0.5 THz.
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Fig. 9. Effective refractive indices of the slab TM modes and the
cylindrical WGMs. The straight dashed line indicates the es-
sentially constant refractive index of silicon ng; = 3.417.
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Fig. 10. Amplitude evolution during the coupling process at 1.0
THz when the slab TM, mode is initially excited.

N

—E Pn(0)a,(6) = E

Crn(0)a,(6), (11D

where N is the total number of WGMs; m, n = 0, 1,..., N
are mode numbers; a,, is the modal amplitude of the nth
mode; and P,,,, and C,,, are coupling coefficients defined
in Eqgs. (9a) and (9b). For simplicity, we use subscript 0
to indicate the slab TM,; mode and n = 1, 2,... to indicate
the nth WGM (denoted as WG,,). Eq. (11) for the CMEs
can be written in the matrix form

d
@[P( 0)A(6)] = iC(H)A(6), (12)

where A(0) is a single-column matrix with the elements
aog(0), ai(0),...any(8). Note that the orthogonality of
WGMs is determined by the overlap integral of the trans-
verse fields, so, in our case, the modes with different
radial number m are orthogonal, thus the coefficients
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P,,~0 and C,,, ~ 0 if m and n refer to different
WGMs. This allows us to reduce the matrices as follows:

[ 1 Py Py -+ Poy
PlO 1 0 0
P(ﬁ) = on 0 1 0 ,
Py O 0O 1
[Co Cor Coo -+ Con
Co)=|Cyp 0 Co - 0 |, (13)
LCno O 0 Cnn

5. NUMERICAL CALCULATION

A. Coupling Coefficients

Putting the integrals in Eqgs. (9a) and (9b) into practice,
we show in Fig. 8 the coupling coefficients for slab TM,,
and cylindrical WG; mode (Cy; and Pgy;) at 0.5 and 1.0
THz for our coupling system. Note that by definition,
C,,, has the dimension of 1/angle. It is seen that at 0.5
THz, the coupling coefficients show an oscillation feature
that results from the two modes’ having a very large
phase mismatch. As shown in Fig. 9, the difference be-
tween the effective refractive indices (see Appendix A) of
TM, and WG, modes at 0.5 THz is much larger than that
at 1 THz. This difference is reflected in Eqgs. (9a) and
(9b) and causes the oscillations in the coupling coeffi-
cients. These oscillations will affect the final coupling re-
sults.

B. Frequency-Transfer Functions

The main transmitted pulse 1b of the sample scan and
the cavity pulses 4b and 5b can be viewed in the fre-
quency domain as linear transformations of the main
transmitted pulse la of the reference scan,? i.e., Aj(w)
= Hj(w)A,(w), where A;(w) stands for the complex spec-
trum of the main transmitted pulse 1b of the sample scan
(j = 0) and that of the first two cavity pulses (j = 1,2),
Hi(w)(j =0,1,2) are their corresponding complex
frequency-transfer functions, and A,(w) is the complex
spectrum of the main transmitted pulse la of the refer-
ence scan. The CMEs have to be solved to obtain the
transfer functions. As described in Section 2 and Ref. 20,
the coupling occurs in several steps. According to the na-
ture of the coupling, different sets of CMEs are used for
different steps.

For the first coupling step, the THz pulse is coupled
from the single slab TM,, mode into the cylinder as a com-
position of several WGMs. In this step, the power is si-
multaneously injected into all the WGMs and the single
slab TM, is depleted, so we use Eq. (12) to calculate the
multimode coupling, and we set the initial modal ampli-
tudes ay; = 1 for the slab TM, mode and a,,; = 0 (m
= 1) for the WG,, modes. Here the subscript i indicates
the initial value. The fourth order Runge—Kutta method
is used to solve Eq. (12) numerically, and we obtain the
frequency-dependent, final, coupled, modal amplitudes
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Fig. 11. Amplitude transfer functions of the main transmitted
pulse |Hy(w)| and the cavity pulses |H(w)| and |Hy(w)|.

aj{w) (for slab TM, mode) and a;,{w) (for WG,, mode),
where the superscript s indicates that the coupling is
from slab TM, to cylinder (slab excited), and the subscript
f indicates the final coupled amplitude. Here ajlw) is
actually the frequency-transfer function for the main
transmitted pulse 1b of the sample scan, i.e., Hy(w)
= ajdw). Figure 10 shows the modal amplitude evolu-
tion of the modes during the coupling process at 1.0 THz
when only the first 8 cylindrical WGMs are taken into ac-
count in the coupling. It is clearly seen that most of the
coupling occurs at the vicinity of the contact, where the
two fields have the greatest overlap. For higher-order
modes (m = 4), since the phase mismatch is larger (refer
to Fig. 9), the modal amplitudes oscillate in the coupling
region. For mode number m = 7, the overall coupling ef-
fect is very small, so in the numerical calculation we will
not take into account modes with m > 8.

After this coupling, the main pulse passes and there re-
mains no electromagnetic wave propagation along the
slab waveguide, but the coupled THz-WGM pulse circu-
lates continuously about the cylinder. The second cou-
pling occurs when this pulse arrives at the slab—cylinder
contact region, where the slab waveguide modes are ex-
cited by the cylindrical WGMs. From Fig. 9, because of
the poor phase-match condition, the coupling from the
WGMs into the TMy mode is considered forbidden in the
frequency range 0.3-2.5 THz; below 1.3 THz, only the
TM, mode is excited with proper phase match; in the fre-
quency range 1.3—2.5 THz, it is possible that both TM,
and TM; modes are excited. In the last case, even
though the TM; mode is excited, because of its antisym-
metric nature it cannot be detected by the receiver.!
From Fig. 9, the coupling to TM,, is mainly from the first
two or three WGMs in this frequency range, while the
coupling into the TM; mode is mainly from the rest of the
WGMs. Therefore, we only consider the coupling into the
single TM,, mode in the calculation of this coupling, since
the coupling into the TM; mode will not affect the overall
coupling results into the TM;, mode. To further simplify
the calculation, we assume that there is no “cross cou-
pling” between the WGMs, i.e., the WGMs couple indi-
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vidually into the TM, mode and the coupling from the
TM, mode back to the WGMs is so weak that the WGMs
do not “see” each other during the coupling process. This
allows us to use the single-mode CMEs (8a) and (8b) to
calculate the coupling from the individual WGM to the
slab TM,, mode, and then combine the results to get the
overall coupling effect.

For this calculation, we set the initial modal ampli-
tudes ay; = 0 for the slab TM, mode and a,,; = 1 (m
= 1) for the WG,, modes. We obtain the frequency-
dependent, final, coupled modal amplitudes ag;'(w) (for
slab TM, mode) and a;,;w) (for WG,, mode), where the
superscript cm indicates that the coupling is from the cy-
lindrical WG,, mode to slab (cylinder excited). The com-
plex frequency-transfer function for the first cavity pulse
is therefore written as?

N
Hy(w) = X, aldw)aii(w)expli2ml,(o)]. (14)

m=1

In a similar fashion the transfer function for the second
cavity pulse can be written as

Hy(0) = 2 abdw)al(w)ash(w)explidnl,(w)].
(15)

Thus, given the noncoupled THz pulse la through the
slab waveguide, we can calculate the transmitted pulse of
the sample scan and the cavity pulses in both the fre-
quency and time domains.%20

C. Calculation Results

Figure 11 presents the amplitude part of the transfer
functions for the three pulses. The calculated results are
shown in Fig. 4 for the main transmitted pulse 1b, and in
Fig. 5 (time domain) and Fig. 6 (frequency domain) for the
cavity pulses, together with their corresponding experi-
mental results. Figure 4 shows that the calculation gives
excellent agreement for the main transmitted pulse, espe-
cially in the time domain. For the cavity pulses, the cal-
culation results also give reasonably good agreement with
the experiment. In the frequency domain, despite the
discrepancy between theory and experiment for the
minima and some detailed structures, the overall spectral
structures of the cavity pulses are well explained by
theory. In the time domain, the oscillation structures of
the cavity pulses are precisely predicted by the theory.
The rapidly oscillating structures in both the time and
frequency domains involve constructive and destructive
interference among the WGMs of the cylinder. This in-
terference is determined by the complex product of cou-
pling results a;, ag; and the relative phase difference be-
tween the WGMs caused by propagation around the
cylinder. Since the THz-WGM pulses propagate a very
long distance (in terms of wavelengths) before being
coupled back to the slab waveguide and detected as the
cavity pulses, it is obvious that any small error in the to-
tal phase calculation could lead to a large discrepancy in
the phase difference between theory and experiment. In
our opinion, the assumptions we used in the calculation,
such as an infinite x dimension of the system and an infi-
nite incoming beam height, all contribute to the discrep-
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ancies. But in general, the theory gives a very good ex-
planation of the propagation properties of the THz-WGM
pulses and the coupling between the slab and the cylin-
der.

6. FURTHER DISCUSSION AND
CONCLUSION

In the case of a cw coupling source, the optimal coupling
efficiency usually requires destructive interference of the
input field and re-emission from the resonator, which nor-
mally results in a gap between the coupler and the
resonator.26 In our case since the input pulse and the
cavity pulse are separated in the time domain, it is evi-
dent that to obtain the maximum coupling, the cylindrical
cavity should be placed in contact with the slab wave-
guide as the overlap of the cylinder and slab fields is
maximum. When the air gap between the two is in-
creased, the coupling will drop exponentially, as predicted
by the theory.

In our experiment the cylindrical cavity has optically
smooth surfaces and is made of high-resistivity silicon
with very low absorption in the THz range. This ensures
negligible absorption and scattering loss during the
propagation of the WGM pulses. However, since the in-
put beam and the cylinder have limited longitudinal di-
mensions, the THz-WGM pulses will spread out in the
longitudinal direction during the propagation. In our
opinion, this is the dominant loss of the isolated cavity.
From the experimental results the ratio of the energies
contained in the first two cavity pulses is 10:9.5, giving a
rough estimate of the overall power decay of the WGM
pulses in the cavity. Given the round-trip transit time of
180 ps, the exponential lifetime of energy in the cavity is
3.6 ns. However, this decay is due mainly to the coupling
loss, and the estimate does not apply to individual fre-
quency points because of the multimode interference na-
ture of the coupling.

In conclusion, we have successfully coupled the THz
pulse into a cylindrical cavity as a composition of the cy-
lindrical WGMs. The strong coupling makes this struc-
ture a promising cavity coupling scheme in future THz
circuits. The cavity pulses cover a continuous frequency
range from 0.4 to 1.8 THz, compared with the discrete
resonant frequencies for the cw case. This study also
demonstrates the propagation properties of the THz-
WGM pulse. Since the different WGMs travel with dif-
ferent group and phase velocities, the WGM pulse is
broadened as it propagates; the first two cavity pulses
have widths of 27 ps and 45 ps, respectively. However,
the two pulses are well separated in the time domain
since the round-trip delay of 180 ps is much longer than
the pulse width. Also, different cavity pulses carry dif-
ferent spectral profiles as a result of interference between
the modes upon detection.

The coupled-mode theory for multimode coupling devel-
oped for the slab—cylinder coupling structure gives a good
explanation of the coupling between the slab and the cyl-
inder and of the propagation properties of the THz-WGM
pulses. The overall spectrum structure and the oscilla-
tion structure of the cavity pulses are well predicted by
the theory.
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In general, we have demonstrated the coupling and
propagation properties of a WGM cavity for THz pulses.
With the continuous effort and advances in the study of
THz technology and its applications, this newly developed
structure may find application in future THz technology.

APPENDIX A: MODE SOLUTIONS AND
DISPERSION RELATIONS

1. Even-Numbered TM Modes of Dielectric Slab
Waveguide

Figure 7 shows the dielectric slab waveguide of thickness
2b and refractive index n,(n? = ¢,) in air. Since the in-
put THz beam is y polarized and symmetric, only even-
numbered TM modes are excited in the slab waveguide.
The nonvanishing field components of the normalized,
even TM modes can be written inside the waveguide
(ly| < b) as??

. 1 kn2 [ecosU,Y
1 cosU,Y

JN,, cosU, ’

1 in2W,sinU,Y

el (y) =

P (y) = —— Al
“nlV) = T N="5 B, snU, (A1
and outside the waveguide (|y| > b) as
1 kn32 €0 exp(_Wm|Y|)
hjscm(y) = - - ’
VN, Bm #o exp(—W,,)
ns2 exp(7Wm|Y|)
eim(y) = :
VN, exp(=W,)
1 in2W, Y exp(-W,|Y])
Cnly) = —F—
VN, b Buw Y] exp(-W,)
(A2)

where the subscript m indicates a specific mode, the su-
perscripts x, y, and z indicate the corresponding compo-
nents, % is the wave vector in free space, and 3,, is the
propagation constant. For simplicity, the phase factor
exp(iB,z — iwt) has been omitted. Other parameters in
the above equations are defined as:

Um =b sznsz - :8m2’ Wm =b \/Bm2 - kza
Y = y/b. (A3)
The normalization factor N,,, is determined by*2
1lzf e,, X h,, - zdx = 1. (A4)

Applying the boundary conditions, we get the following ei-
genvalue equation:

naZWw, = U, tanU,,. (A5)

Solving (A5) for B3,,, we obtain a set of solutions (modes).
The modes are numbered by the number of zeros of the
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magnetic field inside the slab waveguide in the y direc-
tion. The normalized field patterns of the slab TM modes
can be found in Ref. 25.

For the purpose of deriving the propagation constant,
the eigenvalue equation for the odd TM modes is also
given here as??

nsW,, = —U, cotU,,. (A6)
2. Cylindrical Whispering-Gallery Modes
Inside the cylindrical cavity, only the modes with E~
= 0 and H? = 0 are excited during the coupling process.
Figure 7 shows the cross section of the cylinder with ra-

dius a and refractive index n.(n? = €.) surrounded by air.
The field solution for the WGMs can be written inside the

cylinder (r < @) as®’
1 [ €y J(kn, 1)
\/Ncm lu'OJl(knca) ’

1 I Ji(kn.)
- N, kn2r Ji(kn.a)’

1 i Jj(kn.r)

hy,(r) =

€em(T)

0 = — ; A7
eem(T) mnc T kn.a) (A7)
and outside the cylinder (r > a) as
1 eo HV(kr)
hjccm(r) = - (1) B
VN, moH(ka)
1 1 HV(kr)
) = N ke H(ka)
i [HV(kr)]
; (A8)

el (r) = ;
JN,,, HV(ka)

where the superscripts x, r, and 0 indicate the correspond-
ing components, J; is the Bessel function of the first kind
of order I, H{¥ is the Hankel function of the first kind of
order /, and the prime (') denotes differentiation with re-
spect to the argument inside the parentheses. Here [/ is
essentially the angular propagation constant for the spe-
cific WGM. Again, the phase factor exp(il6 — iwt) has
been omitted. The normalization factor N, is deter-
mined by??

1y f e, X h,, - 6dr = 1. (A9)
0

The normalized field patterns for the first five cylindrical
WGMs can be found in Ref. 25. Applying the boundary
conditions we get the following eigenvalue equation:

Jj(kn,a)  [HV] (ka)

= (A10)
ned(kn.a) HV(ka)

Solving the eigenvalue Eq. (A10), we obtain a set of solu-
tions with each solution corresponding to a WGM. There
are two ways to solve Eq. (A10): (a) given [, solve for the
eigenfrequencies; (b) given the frequency, solve for . In
the case of ¢cw single-frequency coupling, / should be an
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integer as required by the coherence condition. Method
(a) is usually used in this case to calculate the resonant
frequencies of a specific cavity resonator. In our case,
since the coupling source is a subpicosecond THz pulse,
the coherence condition is not required, so / can be con-
tinuous, corresponding to a continuous frequency range.
We use method (b) to solve Eq. (A10). For each given fre-
quency, a set of solutions for / is obtained and numbered
by m, the number of zeros of the transverse field compo-
nent in the radial direction. This method is in fact analo-
gous to that for the slab TM modes, where the frequency
was given, to solve for the propagation constant. Here
the solutions of [ are generally nonintegers.

A cylindrical WGM is usually indexed by three num-
bers: angular index [ (the angular propagation con-
stant), radial index m (should always be an integer), and
axial index A (the propagation constant in the axial direc-
tion). In our case we assume that the cylinder is longi-
tudinally infinite, so the axial propagation constant ~ can
be set to zero and hence dropped from the index. In ad-
dition, the angular number / is a solution to the eigen-
value equation that is determined by the frequency and
radial number m. This leaves m the only number to
specify a mode. In this paper, we use WG,, to indicate
the WGM with radial number m, with WG; having one
zero point located at the center of the cylinder (r = 0).
Its corresponding angular number should be written as /,,
to indicate a mode-dependent angular propagation con-
stant. For legibility the subscript m has been omitted for
l,, in Egs. (A7) and (A8).

3. Dispersion Relation

To analyze the coupling between the slab TM modes and
cylindrical WGMs, it is necessary to know the dispersion
relation of the slab TM modes and the cylindrical WGMs.
For convenience we define the effective refractive indices
as

o cBulf) A
nsm(f) - Vsm(f) - 27Tf
for the slab modes and
c cln(f) A
Pl )= T 2wt (A1

for the WGMs,'® where the subscript m indicates an indi-
vidual mode and v, and v,,, are the phase velocities for
the slab TM,, mode and the WG,, mode, respectively.
Figure 9 shows the effective refractive indices for the slab
TM,, TM;, and TMy; modes and the first 8 cylindrical
WGMs for our coupling system.

APPENDIX B: FIELD EXPRESSIONS FOR
THE SLAB-CYLINDER SYSTEM

Here we give the field expressions in terms of the normal-
ized field solutions. The fields for the isolated slab sys-
tem are
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E(r, 0) = E\(r, 6) + 0E’(r, 0)
= [el(r, 0) + bel(r, 0)]exp(ifz),
H,(r, 6) = H\(r, 0) + 6H!(r, )
= [hi(r, 6) + 0h'(r, 0)lexp(iBz). (B1)
The fields for the isolated cylinder system are
E.(r, 0) = E\(r, 6) + 0EX(r, 0)
= [e\(r, 0) + 0el(r, 0)]exp(il 6),
H,(r, 6) = H.(r, 0) + 6H'(r, 6)
= [hi(r, 6) + 6h'(r, 6)]exp(ilh). (B2)

In the above equations, the lower case e(e) and h(h) rep-
resent the normalized field components. In our case,
these components are

el(r, 0) = 7[e(y)cos 6 + e3(y)sin 6],
hi(r, 0) = £h3(y),

el(r, 6) = e*(y)cos 6 — eX(y)sin 0,
hir, 6) = 0,

t

e(r, 0) =rey(r),  elr, 0) =elr),

hi(r, 6) = xh*(r),  hir, 6) =0, (B3)

where the Cartesian coordinates of the slab can be ex-

pressed in the cylindrical system as
y =rcosf— (a +0b), z = rsin 6. (B4)

On the other hand, if we assume that the slab—cylinder
system is lossless so that the relative permittivities are
all real, then the modal fields propagating along the —6
direction of the isolated slab and cylinder can be written
respectively, as follows?224:

E,(r, 0) = [el(r, 6) — fel(r, 6)]exp(—il0),
H, (r, 6) = [~hi(r, 6) + 0h'(r, 6)]exp(—il6),
E.(r, 0) = [el(r, ) — Gel(r, 0)]exp(—ipz),

H,(r, 0) = [—h'(r, 6) + 6h!(r, 0)]exp(—ipz).
(B5)

The total fields of the system can be formed as the modal
combination of the slab and the cylinder modes as?>%*

Er(r, 0)

ay(z)

Eg A
Ei(r, ) + —OE!(r, 0)
er

+ a(0)

13 iA 0
E'(r, 6) + —6E’(r, 6)
er

Es A
el(r, 6) + —6el(r, 0)
er

= a,(z) exp(iBz)

+ ac( 9) eXP(ll 6)’

.
el(r, ) + —oel(r, 0)
er
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Hy(r, 0) = a,(z)[H\(r, ) + 6H'(r, 0)]
+ a (O[HL(r, ) + 6H!(r, 0)]
= ay(2)[hi(r, 0) + Oh’(r, 0)]exp(iBz)

+ a(O)[hi(r, 0) + 6R(r, 0)]exp(il6).
(B6)
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