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Effect of spherical aberration and surface waves on
propagation of lens-coupled terahertz pulses
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Spatiotemporal measurements of a near-single-cycle terahertz pulse emitted from a photoconductive switch
terahertz (THz) source show the effects of spherical aberration and surface waves on the pulse shape. The
measured phase front has a swallow-tail shape described by catastrophe theory that contributes to the con-
centric ring structure of THz beam profiles. A time-of-flight model shows that the pulse shape is due to
propagation along a cusp caustic and enhancement of the wings of the swallow-tail pulse is caused by sur-
face waves. © 2005 Optical Society of America

OCIS codes: 320.5550, 080.1010, 260.3090.
Ultrashort pulses reshape even in dispersion-free,
linear media when approaching the single-cycle limit
and originating from optical elements that change
the phase front of the pulse. For example, very short
optical pulses undergo reshaping near the focus of a
lens because of spherical aberration.1 An experimen-
tally tractable way to measure single-cycle pulse
propagation is through generation and detection of
terahertz (THz) pulses2 and mapping of the electric
field with high spatial and temporal resolution.3 Sev-
eral authors have investigated THz pulse reshaping
in diffraction,4 Gaussian mode coupling efficiency,5

and time reversal imaging.6

Here we show that the inverse analog of pulse re-
shaping at the focus of a lens1 affects the spatiotem-
poral phase front of lens-coupled optically generated
THz pulses. A THz pulse outcoupled from a collimat-
ing lens exhibits a universal swallowtail shape7 de-
scribed by catastrophe theory. This shape results
from both spherical aberration and surface waves2

and contributes to the observed concentric-ring struc-
ture of near-field THz beams.3,5,8

The experimental setup used has been discussed
previously3 and is shown schematically in Fig. 1(a).
The optically generated THz pulse is polarized along
x̂ and propagates along ẑ. The silicon collimating
lens [Fig. 1(b)] has a 5-mm radius of curvature and a
6.45-mm total height5 and is cemented to the dipole
substrate to eliminate beam clipping from mounting
hardware. The frequency-independent radiation pat-
tern of the THz dipole source is shown in the left half
of Fig. 1(b) for S and P polarizations. Raster scans
(80 points, 160-mm spacing) using a fiber-coupled di-
pole antenna3 spatially mapped the THz field along
the y (S polarization) and x (P polarization) axes at
distances of 16 and 3.2 mm from the surface of the
silicon lens, respectively.

The measured pulse shape at 16 mm [Fig. 2(a)] is a
planar pulse front followed by trailing edges or wings
classified in catastrophe theory as a swallowtail
cusp.7 Measurements of the time-resolved field at y
=0, 2, and 4 mm are overlaid on the figure. The spa-
tial amplitude distribution at five discrete frequen-
cies, obtained from a numerical Fourier transform, is
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shown in Fig. 2(b). The frequency-dependent spatial
amplitude distribution results from interference be-
tween the time-delayed wings of the swallowtail and
the leading edge. Figure 2(c) shows the pulse struc-
ture at 3.2 mm (20l at 1.9 THz) from the source lens.
Spatial inhomogeneities of the source field arise both
from the field pattern of a dipole on a surface9 [Fig.
1(b)] and because the critical angle in silicon is near
Brewster’s angle, leading to more-efficient coupling
around the annulus of the lens.3 The increased field
amplitude in an annular region close to the lens is in-
dicated by arrows in Fig. 2(c). The broad trailing edge

Fig. 1. (a) Spatiotemporal THz measurement system. (b)
Collimating silicon lens illustrating regions i, ii, and iii, the
field patterns for S and P polarization, and angles u, g,
and f.
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of the pulse in Fig. 2(c) is due to efficient coupling of
low-frequency components to free space owing to sur-
face waves.

To describe the swallowtail pulse shape in the
near-field region of the lens, three regions—direct (i),
marginal (ii), and surface waves (iii)—are illustrated
in Fig. 1(b). These regions are determined by angles
u, g, and f defined in Fig. 1(b). In the direct region (i),
g,0 and rays never cross the optical axis, originat-
ing from a 6.00-mm-diameter aperture. The marginal
region (ii) emits rays that cross the axis of propaga-
tion sg.0d but are incident on the lens under the
critical angle. The marginal region is between the di-
rect ray region and a 9.15-mm-diameter aperture,
contributing heavily to the pulse because of the di-
pole field pattern and large values of the Fresnel

Fig. 2. (a) THz electric field at 16 mm with overlay of mea-
sured pulses at y=0, 2, and 4 mm. Solid line in inset is
time-of-flight model prediction. (b) Spatial amplitude dis-
tribution of the field at five discrete frequencies. The inset
is the calculated field distribution. (c) THz field at 3.2 mm;
arrows show annular field distribution near the surface of
the lens. Inset shows the time-of-flight model predictions of
pulse structure.
transmission coefficients. The surface ray region (iii)
is where f is beyond the critical angle. The field ex-
ternal to the lens is typically evanescent, but energy
may be coupled to free space through surface waves
owing to the curved geometry of the interface.10

The stationary-phase approximation, dF /dC=0, is
used to determine the time of flight of the pulse
front.11 F is the accumulated phase for a given
frequency component, F=koC, to any spatial point
sy ,zd, determined from angle-dependent optical path
length C:

C = nLsR2 + w2 + 2Rw cos bd1/2 + fsR sin b − zd2

+ sy + R − R cos bd2g1/2, s1d

where b=f+g, w=h−R, and nL=3.42 is the index of
refraction of the silicon lens. Although most rigorous
in the high-frequency limit, time-of-flight models can
be valid for near-single-cycle pulses.2 For a swallow-
tail pulse the phase function contains three station-
ary points (pulses).

The evolution of the pulse front calculated from the
time-of-flight model is shown as a heavy solid line in
Fig. 3(a) at 90, 133, and 300 ps after optical excita-
tion; the lighter dashed lines represent normals to
the phase front (rays).7 In the far field the stationary
points of the leading and trailing edges of the swal-
lowtail approach the same limit, a spherical phase
front. The insets in Figs. 2(a) and 2(c) show a com-
parison of the time-of-flight analysis (white line) with
the measured pulses. The flat leading edge of the
swallowtail pulse corresponds to the contribution by

Fig. 3. (a) Stationary phase analysis of the collimating
lens system. The inset is the pulse front surface corre-
sponding to this lens. The ray diagrams (above) and pulse
front surfaces for focusing and aplanatic hyperhemispheri-

cal lenses are shown in (b) and (c), respectively.
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direct rays (i), whereas the trailing edges of the swal-
lowtail pulse are from marginal and surface rays (ii,
iii). The inset in Fig. 2(b) shows the spatially resolved
amplitude distribution from the time-of-flight model
with the trailing edge pulse amplitude of 40% of the
leading edge and a near-p phase shift owing to propa-
gation through a caustic.11 The calculated interfer-
ence is multiplied by a Gaussian distribution with a
4.5-mm waist. The simple model qualitatively repro-
duces the amplitude distribution observed, with the
exception that the calculated distributions have
smaller spatial extent, possibly because of diffrac-
tion.

The time-of-flight model does not account for sur-
face waves generated in region iii of the lens as seen
by disagreement of the time-of-flight model [inset in
Fig. 2(c)] with the observed pulse shapes at d
=3.2 mm. The time-of-flight model (white line) pre-
dicts that the geometric shadow of the lens surface
will obscure the trailing wings of the pulse front
coupled out of region ii. The trailing wings of the
swallowtail pulse arise from radiation of surface
waves12 generated by the pulse front incident on the
lens surface in region iii. The critical angle is strictly
defined in the limit of r /l approaching `, i.e., for
flat surfaces. For THz frequencies (l at 0.5 THz
=600 mm) and the 5-mm lens curvature, coupling
into surface waves becomes wavelength dependent,12

creating a caustic tangent to the lens surface.10

The origin of the swallowtail pulse front is thus
due to both surface waves and the effect of the lens
on the pulse front. A lens in the paraxial limit pro-
duces a planar phase front from a diverging spherical
wave by introducing a phase delay proportional to
the square of the transverse position sr2d. However,
outside the paraxial limit the pulse front exhibits
phase shifts caused by third-order (Seidel)
aberrations.11 Since the source dipole lies on the op-
tical axis, only spherical aberration contributes, in-
troducing a quartic sr4d phase delay.

Catastrophe theory13,14 classifies the behavior of
families of polynomial equations, i.e., spherical aber-
ration, according to the number of solutions at each
point in a parameter space, here the number of sta-
tionary phase points at each location in space–time.
Rays in Fig. 3(a) represent spatial solutions on which
stationary values of the phase delay occur at some
undetermined time. A caustic surface is the boundary
between regions of space at which the number of real
solutions changes. As shown in Fig. 3(a), three rays
intersect at any point within the caustic; i.e., there
are three phase extrema. The temporal locations of
these extrema are the pulse fronts of the swallowtail
pulse; the leading edges are local minima, whereas
the trailing edges are local maxima. At the caustic
boundary the solutions are degenerate and overlap.13

Catastrophe theory classifies caustics resulting
from a quartic phase correction sr4d as A3, or axial
cusp caustics.14 Since the phase delay for any ray in-
tersecting a caustic surface at a given point is con-
stant, the shape of the caustic determines the pulse
front at any given time7 and a caustic of a given codi-
mension will generate a pulse front described by the
catastrophe of the next-highest codimension.7,15 Thus
an A3 spatial caustic (r4 phase delay) will have a
pulse front of the form of A4 (fifth-order polynomial)
in time,7,15,16 which corresponds to the observed swal-
lowtail pulse. The A4 pulse front maps out a surface
in space–time that represents the stationary points
of the phase [inset in Fig. 3(a)], demonstrating the
evolution of the THz pulse as a function of y, z, and
time. The A3 cusp caustic, or projection on the ŷẑ
plane, is shaded.

The temporal shape of the THz pulse coupled to
free space, is dependent on the lens geometry. Lenses
with a large h focus the THz pulse, and beyond the
focus the pulse front becomes nearly spherical as
shown in Fig. 3(b). Figure 3(c) illustrates the phase
front for small h, the aplanatic hyperhemispheric
lens5 that exhibits no real caustics, only single solu-
tions to the ray propagation outside the lens. Al-
though the collimating lens [Fig. 3(a)] has a focus at
infinity with three real solutions for all Z, the three
solutions approach the same limiting value at large
distances and a spherical phase front is experimen-
tally observed.3
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