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Transmission terahertz waveguide-based imaging below
the diffraction limit
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Using a terahertz line source from a near dispersion-free parallel plate waveguide, we demonstrate
broad bandwidth imaging at terahertz frequencies with subwavelength image resolution. Terahertz
radiation is coupled into a parallel plate waveguide with a 4@ plate spacing, which serves as

the imaging aperture. The image data are collected as projections and the final image is
reconstructed using the filtered back-projection algorithm, similar to that in x-ray computed
tomography. Images taken using a waveguide-based line source demonstrate higher resolution than
can be achieved using a confocal cylindrical lens setuf2005 American Institute of Physics
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There is currently much interest in developing imagingfocal lengths(f=7.07 mm), is placed midway between the
techniques at teraher{@Hz) frequencies. Since the initial collimating paraboloidal mirrors, as shown in Fig. 1. The
demonstration of raster-scanned THz imagdirgwide vari-  cylindrical lenses create a high-aspect-ratio elliptical focal
ety of THz imaging techniques have been demonstrated, irspot with a frequency-independent beam profile inythai-
cluding tomographié;? time reversaf, quasioptic, and syn-  rection and frequency-dependent beam profile inxtiéec-
thetic aperture methodswhile the imaging resolution of all tion. The radius of curvature of the cylindrical lenses is
these techniques is limited by the wavelengghbmillime- 5 mm, diameter 10 mm, and the height 15 mm. The image
ter), near-field imaging techniques using apertﬂrhave plane is situated at the focus of the cylindrical lenses and is
achieved subwavelength resolution. Such images have greparallel to the plane surface of the cylindrical lenses. Second,
potential, recent imaging techniques using a scanning probtae same cylindrical lenses were used to couple the colli-
tip have measured features as small as 156 nm. mated THz beam in and out of a parallel plate wavegtide.

While THz radiation is severely attenuated upon propa-The cylindrical lens-waveguide-cylindrical lens configura-
gation through subwavelength apertures, this is not the cag®n shown in Fig. 1b) is placed at system beam waisp.w
in propagation through parallel plate waveguides. As showiThe cylindrical lenses are spaced one focal length away from
in recent demonstrations, near dispersion-free propagation tfie waveguide faces. The exit slit of the waveguide serves as
THz pulses occurs in waveguides with losses determined prihe imaging aperture and is in close proximity25 um) to
marily by the overlap of the free space THz field pattern andhe target; that is, the target is placed between the exit slit of
the waveguide modeFor parallel plate waveguides there is the waveguide and the cylindrical lens coupling out of the
no inherent mode cutoff as the plate spacing decreasegjaveguide, as shown in Fig.(d). For both methods, the
which permits high-brightness line apertures to be createthetallization on the wafer faces the illuminating aperture.
with a plate spacing substantially less than a wavelength. IiThe waveguide is fabricated from two optically polished
other words, there is a nearly one-dimensional field distribubrass slabs with a 400 nm thick gold overcoat on the inside
tion at the exit face of the waveguide. We apply the tech-
nigue of waveguide THz spectroscopy to achieve a subwave-
length line excitation, which allows imaging at less than the le
diffraction limit. This technique has been previously demon- y,s-axis
strated at millimeter wave frequencies to achieve spatiotem-
poral measurements of carrier relaxati8r* T

The experimental setup consists of a standard confocal
THz time domain spectroscopy sysf@mvith the THz beam
polarized in theyz plane, as shown in Fig. 1. The THz beam
has a quasi-Gaussian profile with a nominally frequency-
independent beam waigt/;) at the source silicon lens, and a
frequency-dependent waidtat w,. Figure 1a) shows the
imaging setup with the two cylindrical lenses and target, ~».______
placed at the beam waiétv,). A 0.4 mm thick, 3 in. diam-
eter silicon wafer with a submillimeter planar horn antenna
structure is used as the imaging ta(me inset in Fig. Q))]. —

To compare waveguide-based imaging to that using con-  8iomm
focal optics, two imaging methods were considered. A pair of \é/ Scauning
high-resistivity cylindrical lenses, spaced by the sum of their
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FIG. 1. (a) Cylindrical lens imaging optics with sampléb) Waveguide
dElectronic mail: kridnix@okstate.edu imaging aperture with sampléc) Axis orientation of sample.
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FIG. 2. (a) Time-resolved data fo#=0°, s=-3 to 3 mm using waveguide

aperture.(b) Waveguide aperture data in radon space with photo of planar B/ B oy
horn antenna inset. 05 1.0 15 20 25 30 35 40 05 1.0 15 20 25 3.0 35 40
mm mm

| - . (a) (b)
waveguide plate walls. The plate spacing is 108, height
is 50 mm, and the waveguide length along the direction ofG. 3. (a) Cylindrical lens reconstructed image and cross section of image
propagation is 23 mm. The cylindrical lenses couple THzdensity function at A and B(b) Waveguide aperture reconstructed image
radiation into a TN (TEM) mode with a frequency- and cross section of image density function at A and B.
independent mode profif’ehowever, the beam profile in the

unguided direction is frequency dependent. Since the wavgime.resolved scans, each consisting of 600 data points over
guide plate spacing is less than a wavelength and becaugeiime window of 86 ps. Figure(d shows time scans at

of the broadband nature of the THz pulse, the electric field-ge 5nd sample translation frosx—3 mm tos=3 mm us-
angular spectrum at the output face of the waveguide wiljhg the waveguide aperture. The time-resolved data is Fou-
have both §4propagatlng and nonpropagating evanesceipy transformed and the amplitude of the electric field at
components. The subwga%velength aperture resolution is duep g THz is used to reconstruct the image for both cylindrical
to the evanescent waveshowever, these evanescent COM-jgns and waveguide aperture. Figute)Shows the acquired
ponents decay exponentially as the distance from the aP€fmage in(s, 6) space using the waveguide aperture.

ture increases. Therefore, the sample has to be in close con- gince both the cylindrical lens and the waveguide aper-
tact with the waveguide aperture to achieve subwavelength e create high-aspect-ratio illumination, the measured THz

resolution. _ o _signal for any object orientation is a line integral along the
The THz source is a coplanar transmission line fab”'imaging aperturé.

cated on semi-insulating GaAs and biased aivgg, while

the THz detector is a 3@m dipole antenna fabricated on
ion-implanted silicon on sapphiﬁé.The THz source and de-
tector are optically gated by a mode-locked Ti:sapphire laser
with a 30 fs pulsewidth and a 80 MHz repetition rate at a

center wavelength of 810 nm. Time-resolved lscans are a(\:/ilherel(e ©) is the frequency-dependent beam profile along
quired using a scanning delay lifsee Fig. 1L~ A high- '

speed, low-noise current amplifier is connected to the TH%he major axist’ of the imaging aperturi(¢) is the sample

receiver and converts the detected photocurrent into a volf—’attern along Fhe apert.ur.e or the image density functiof)
age. The output from the current amplifier is fed through &S the absorption coefficient of the sample along the path of

bandpass filter to the data acquisition hardware. To impronrOp"’u-:]ationAZ is the sample thickness, and is the incre-

the signal-to-noise ratio, each projection was averaged ovdpental length along the aperture. For the measured target,
nine iterations. the exponential term has values of O or 1 due to the high

The object to be imaged is mounted on a rotation stagéeflectivity of metals and the transparency of the Si substrate

with an 83 mm clear aperture. The rotation stage is mountedt 112 frequencies. The measured projectiog(s, 0), are

H H 17,18
on a motorized translation stage moving in the direction norihe radon transform of the image density functféx,y).

mal to the optical axis. This allows for sample rotation in theThe radon transform of a function assumes a one-
xy plane and translation along tiyes axis, as shown in Fig. dimensional line source represented by a delta functioh:
1(c). The resolution of rotational and linear motion are 1°

and 20um, respectively. The rotation stage is aligned such w o

that the optical axis is collinear with the centerline of the g(s,6) =f f f(x,y)8(x cosf+ysin6-s)dxdy. (2)
rotation stage, where at this positiossy=0 mm. Image B

projections are acquired by moving the sample across the

imaging plane along they,s direction and rotating the For the THz system, the line source is actually an ellipse
sample once the translation is finished. The images in Fig. here the minor axis is given by the diffraction limited beam
were acquired by moving the sample from —3.0 to 3.0 mmwaist for the confocal configuration or the waveguide plate
along they axis in 20um increments. Since the sample is spacing for the waveguide aperture. The major axis is fre-
rotated, and not the aperture, thaxis andy axis coincide. quency dependent, as shown in Fig. 1.

For consistency with notation used in the references, the ex- To extract the image from the projection data, the filtered
periment’sy axis corresponds to the axis in radon space. back-projection algorithm is uséd®The resulting image is
This measurement was repeated for 18 angles titinging  the original image convolved by the point spread function of

from 0° to 170° in 10° increments. This resulted in 5400the back-projection operatot:
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freconstX,Y) = F(X,y) ® (@ +y?) 12, (3)  zation where the cylindrical lens image can be considered
just resolved.
We have demonstrated the use of computed tomography

The finite waveguide plate spacing or the diffraction limit of . ;hstruction techniques in the THz frequency range using

the i”f‘aging optics resglts in the _recongtructed image be_ingNo types of imaging apertures. Diffraction limited imaging
effectively convolved with a two-dimensional Gaussian W'thwas achieved using a confocal cylindrical lens aperture. We

th‘? spatial extent of th? aperture’s spot _size along the minozﬁlso demonstrated subdiffraction limit imaging using a par-
axis. The minimum achievable spot size is determined by th

. S Sllel plate waveguide as the imaging aperture.
diffraction limit, however, for the strongly curved lens sur- P g ging ap

faces used here, spherical aberration also affects the spot The authors acknowledge the support of the National
size!*?°The minor axis of the cylindrical lens waist radius is Science FoundatiofiNSF9984895 Army Research Office
given by Wiingr= N ey/ mWo(N),*" where the focal lengtfie,  (40992-PH-DP§ and Department of EnergyDE-FGO2-

of the cylindrical lens is 7.07 mm\ is the free space wave- 02ER45960 for support of this work.

length, andw,(\) is the frequency-dependent beam waist at
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