Skip to main content
Apply

Engineering, Architecture and Technology

Open Main MenuClose Main Menu

Chemical Engineering's Dr. White recently published in JACS

Friday, September 2, 2022

Dr. White’s group, including current and former graduate students as well as collaborators, publishes new paper in JACS detailing the identification and activity of paired active sites in zeolite catalysts.

 

17O Labeling Reveals Paired Active Sites in Zeolite Catalysts

Abstract: 

 

Current needs for extending zeolite catalysts beyond traditional gas-phase hydrocarbon chemistry demand detailed characterization of active site structures, distributions, and hydrothermal impacts. A broad suite of homonuclear and heteronuclear NMR correlation experiments on dehydrated H-ZSM-5 catalysts with isotopically enriched 17O frameworks reveals that at least two types of paired active sites exist, the amount of which depends on the population of fully framework-coordinated tetrahedral Al (Al(IV)-1) and partially framework-coordinated tetrahedral Al (Al(IV)-2) sites, both of which can be denoted as (SiO)4–n–Al(OH)n. The relative amounts of Al(IV)-1 and Al(IV)-2 sites, and subsequent pairing, cannot be inferred from the catalyst Si/Al ratio, but depend on synthetic and postsynthetic modifications. Correlation experiments demonstrate that, on average, acidic hydroxyl groups from Al(IV)-1/Al(IV)-2 pairs are closer to one another than those from Al(IV)-1/Al(IV)-1 pairs, as supported by computational DFT calculations. Through-bond and through-space polarization transfer experiments exploiting 17O nuclei reveal a number of different acidic hydroxyl groups in varying Si/Al catalysts, the relative amounts of which change following postsynthetic modifications. Using room-temperature isotopic exchange methods, it was determined that 17O was homogeneously incorporated into the zeolite framework, while 17O → 27Al polarization transfer experiments demonstrated that 17O incorporation does not occur for extra-framework AlnOm species. Data from samples exposed to controlled hydrolysis indicates that nearest neighbor Al pairs in the framework are more susceptible to hydrolytic attack. The data reported here suggest that Al(IV)-1/Al(IV)-2 paired sites are synergistic sites leading to increased reactivity in both low- and high-temperature reactions. No evidence was found for paired framework/nonframework sites.

 

Click to Continue Reading 

Back To Top
MENUCLOSE