Skip to main content

Selected Publications

  • Ceramic Composites
    1. R.N. Singh and S.K. Reddy, “Influence of Residual Stresses, Interface Roughness, and Fiber Coatings on Interfacial Properties in Ceramic Composites,” Journal of the American Ceramic Society79(1), 137-147 (1996).
    2. S. Kumaria, S. Kumar, and R.N. Singh “The First Matrix Cracking Behavior of Fiber Reinforced Ceramic Matrix Composites,” Acta Materialia45[12], 5177-5185 (1997).
    3. Y. Sun and R.N. Singh, “The Generation of Multiple Matrix Cracking and Fiber-Matrix Interfacial Debonding in a Glass Composite,” Acta Materialia46[5], 1657-1667 (1998).
    4. Y. Sun and R.N. Singh, “Determination of Fiber Bridging Stress Profile By Debond Length Measurement,” Acta Materialia48, 3607-3619 (2000).
    5. Y.L. Wang, U. Anandkumar, and R.N. Singh, “Effect of Fiber Bridging Stress on the Fracture Resistance of Fiber Reinforced Ceramic Composites,” Journal of the American Ceramic Society83[3], 1207-14 (2000).
    6. U. Anandkumar, S. Kumar, and R. N. Singh, “First Matrix Cracking Behavior of Ceramic Composites at Elevated Temperatures,” Acta Materialia47[12], 3339-3352 (1999).
    7. K.L. Luthra, R.N. Singh, and M.K. Brun, “Toughened Silcomp Composites-Process and Preliminary Properties,” American Ceramic Society Bulletin72, 79-85 (1993).
    8. H. Zhou and R.N. Singh, “A Kinetics Model for the Growth of SiC by the Reaction of Liquid Silicon with Solid Carbon,” Journal of the American Ceramic Society78[9], 2456-2462 (1995).
    9. S. Kumar and R.N. Singh, “Effects of the Coating Properties on the Crack Deflection and Penetration in Fiber-Reinforced Ceramic,” Acta Materialia45[11], 4721-4731 (1997).
    10. S. Kumar and R.N. Singh, “Single and Double Deflections of the Crack at the Carbon-Carbon/BN Interfaces in Ceramic Matrix Composites,” Journal of the American Ceramic Society81[5], 1329, (1998).
    11. R.N. Singh and W.A. Morrison, “Fiber-Containing Composite,” U.S. Patent #5,021,367 (1991).
    12. R.N. Singh and W.A. Morrison, “Filament-Containing Composite,” U.S. Patent # 5,043,303 (1991).
    13. R.N. Singh et al., “Fiber-Containing Composite,” U.S. Patent # 5,015,540 (1991).
    14. R.N. Singh and W.A. Morrison, “Filament-Containing Composite,” U.S. Patent # 5,330,854 (1994).
    15. R.N. Singh, “Process for Making Composite Containing Fibrous Material,” U.S. Patent # 5,336,350 (1994).
    16. R.N. Singh, “Composite Containing Fibrous Material,” U.S. Patent # 5,432,253 (1995).
    17. R.N. Singh et al., “Silicon Carbide Composite with Coated Fiber Reinforcement,” U.S. Patent # 5,552,352 (1995).
    18. R.N. Singh et al., “Silicon Carbide Composite with Metal Nitride Coated Fiber reinforcement,” U.S. Patent # 6,074,750 (2000).
    19. R.N. Singh et al., “Silicon Carbide Composite with Metal Nitride Coated Fiber reinforcement,” U.S. Patent # 6,074,750 (2000).
  • Nanomaterials
    1. M. Jana and Raj N. Singh, “A Review: Progress in CVD Synthesis of Layered Hexagonal Boron Nitride with Tunable Properties and Their Applications”, International Materials Reviews DOI: http://dx.doi.org/10.1080/09506608.2017, May (2017).
    2. N. Govindaraju, and R.N. Singh, “Processing of Boron Nitride Nanotubes and Boron Nanowires by CVD”, in “Nanotube Superfiber Materials, Transforming Engineering Design”, V. Shanov, Mark J. Schulz, and Z. Yin (Eds.), Elsevier B.V., Amsterdam, Netherlands (2013). A book chapter
    3. S. Samantaray and R.N. Singh, “ A Review of Synthesis and Properties of Cubic Boron Nitride Thin Films,” International Materials Reviews 50(6), 313-344 (2005).
    4. L. Guo, and R.N. Singh, “Selective Growth of Boron Nitride Nanotubes by Plasma-Enhanced Chemical Vapor Deposition at Low Substrate Temperature”, Nanotechnology, 19, 1-6 (2008).
    5. L. Guo and R.N. Singh. “ Catalytic Growth of Boron Nitride Nanotubes using Gas Precursors”, Physica E 41(3), 448-453 (2009).
    6. L. Guo and R.N. Singh, “ Growth of Boron Nitride Nanowires by Microwave Plasma CVD,” Materials and Systems 2, 423-430 (2006).
    7. L. Guo, R.N. Singh, and H-J Kleebe, “ Growth of Boron-rich Nanowires by Chemical Vapor Deposition (CVD)”, J. Nanomaterials, 1-6, 58237 (2006).
    8. L. Guo, R. N. Singh, and H. J. Kleebe, “Nucleation and Growth of Boron Nanowires on ZrB2 Particles”, Chemical Vapor Deposition, 12 (7), 448-452 (2006).
    9. D. Das and R.N. Singh, “ A Review on Nucleation, Growth, and Low-Temperature Synthesis of Diamond Thin Films,” International Materials Review, 52(2), 1-37 (2007).
    10. N. Govindaraju, C. Kane, and R.N. Singh, “Processing of Multilayered Nanocrystalline and Microcrystalline Diamond Thin Films Using Ar-rich Microwave Plasmas”, Journal of Materials Research, 26(24), 3072 � 3082 (2011)
    11. N. Govindaraju, and R.N. Singh, “Processing of Nanocrystalline Diamond Thin Films for Thermal Management of Wide Bandgap Semiconductor Power Electronics”, Materials Science and Engineering: B Advanced Functional Solid-State Materials, 176(14), 1058 �41072 (2011).
    12. P. Rouhani, N. GovindarajuJ.K. Iyer, A. Kaul, R. Kaul, and R. N. Singh, “Purification, functionalization and characterization of nanodiamond to serve as a platform for amoxicillin delivery”, Materials Science and Engineering C, 63, 323-332(2016).
    13. Janaki Kannan Iyer, Alexia Dickey, Parvaneh Rouhani, Anil Kaul, Nirmal Govindaraju, Raj Narain Singh, Rashmi Kaull, “Nanodiamonds facilitate killing of intracellular uropathogenic E. coli in an in vitro model of urinary tract infection pathogenesis”, PLoS ONE 13(1): e0191020. https://doi.org/10.1371/journal.pone.0191020, January 11, 2018).
  • Li-ion and Sodium-Sulfur High Energy Density Battery
    1. M. Jana and Raj N. Singh, “A Study of Evolution of Residual Stress in Single Crystal Silicon Electrode using Raman Spectroscopy”, Appl. Phys. Letts, 111, 063901-5 (2017).
    2. M. Jana and Raj N. Singh, “Hierarchical Nanostructured Silicon-Based Anodes for Lithium-ion Battery: Processing and Performance”, J Mat Sci Eng-B 232�235, 61-67 (2018).
    3. M. Jana and Raj N. Singh, “A Facile Route for Processing of Silicon-Based Anode with High Capacity and Performance”, Materialia 6, 100314 (2019).
    4. R.N. Singh, “Chemical Polishing Behavior of Sodium Beta/Beta" Alumina Electrolytes,” Journal of the American Ceramic Society67, 696 (1984).
    5. R.N. Singh, R.H. Ettinger, and N. Lewis, “Hot-Stage for In-Situ Operation of a Battery in a Scanning Electron Microscope” Review of Scientific Instruments55(5), 773 (1984).
    6. R.N. Singh and N. Lewis, “Role of Electrolyte-Sodium Interface Behavior to the Degradation of a Sodium-Sulfur Cell,” Solid State Ionics9-10, 159 (1983).
    7. R.N. Singh, “Surface Characteristics of Sodium Beta" Alumina Electrolyte Compositions,” Journal of the American Ceramic Society67, 637 (1984).
    8. R.N. Singh, “Asymmetric Polarization Behavior of Sodium Beta" Alumina Electrolyte,” Journal of the American Ceramic Society70(4), 221 (1987).
    9. R.N. Singh, “Etched Beta"-Alumina Ceramic Electrolyte,” U.S. Patent # 4425415 (1984).
    10. R.N. Singh, “Etched Beta"-Alumina Ceramic Electrolyte,” U.S. Patent # 4381968 (1983).
    11. R.N. Singh, “Method of Etching to Form Cationically-Conductive Ceramic Body,” U.S. Patent # 4381216 (1983).
    12. R.N. Singh, “Chemically Polished Ceramic Body,” U.S. Patent # 4374701 (1983).
  • Ferroelectric and Dielectric Ceramic Materials
    1. Disna P. Samarakoon and Raj N. Singh, “Influence of Alumina Dopant and Environment on the Electrical Properties of Calcium Copper Titanate Ceramics,” paper submitted to Journal of Materials Science and Engineering B. June 27, 2019.
    2. Disna P. Samarakoon and Raj N. Singh, “Thickness dependent dielectric properties of calcium copper titanate ceramics measured in a controlled atmosphere”, Ceramics International45, 16554�16563 (2019).https://doi.org/10.1016/j.ceramint.2019.05.192.
    3. Disna P. Samarakoon, Nirmal Govindaraju, and Raj N. Singh, “Influence of Atmospheres on the Dielectric Properties of Calcium Copper Titanate Ceramics”, Journal of the American Ceramic Society, 2019 (online), pp.1-13. https:// DOI: 10.1111/jace.16381
    4. Disna P. Samarakoon, Nirmal Govindaraju, and Raj N. Singh, “Dielectric Properties of Calcium Copper Titanate Ceramics Exposed to Air and Dry Nitrogen Atmospheres”, Transactions of the Indian Institute of Metals, 0975-1645, pp. 1�7, (2019). https://doi.org/10.1007/s12666-018-1551-1
    5. H. Wang and R.N. Singh, “Crack Propagation in Piezoelectric Ceramics: Effects of Applied Electric Fields,” Journal of Applied Physics81[11], 7471 (1997).
    6. Y. Yu and R.N. Singh, “Effect of Composition and Temperature on Field-Induced Properties in the Lead Strontium Zirconate Titanate System,” Journal of Applied Physics88[12] 7249-7257 (2000).
    7. H. Wang and R.N. Singh, “Electric Field Effects on the Crack Propagation in an Electrostrictive PMN-PT Ceramics,” Ferroelectrics168, 281 (1995).
    8. S. Kumar and R.N. Singh, “Crack Propagation in Piezoelectric Materials under Combined Mechanical and Electrical Loadings,” Acta Materialia44(1) 173-200 (1996).
    9. S. Kumar and R.N. Singh, “Energy Release Rate and Crack Propagation in Piezoelectric Materials. Part-I Mechanical/Electrical Load,” Acta Materialia45(2), 849-857 (1997).
    10. S. Kumar and R.N. Singh, “Influence of Applied Electric Field and Mechanical Boundary Condition on the Stress Distribution at the Crack Tip in Piezoelectric Materials,” Materials Science and Engineering A231, 1-9 (1997).
    11. I. Dutta and R.N. Singh, “Processing, Electro-Mechanical Behavior and Microstructure of Strontium Modified Lead Zirconate Titanate Ceramics,” Ferroelectrics393, 71-87 (2009).
    12. I. Dutta, R.N. Singh, “Effect of Electrical Fatigue on the Electromechanical Behavior and Microstructure of Strontium Modified Lead Zirconate Titanate Ceramics,” Materials Science and Engineering B166, 50-60 (2010).
    13. V. Katyal, Y.-L. Wang and R.N. Singh, “Subcritical Crack Growth in Unpoled and Poled Ceramics Under Applied Static and Oscillating Electric Fields. I Experimental Observations”, Ferroelectrics 470, 126-142 (2014).
    14. V. Katyal, Y.-L. Wang and R.N. Singh, “Subcritical Crack Growth in Unpoled and Poled Ceramics Under Applied Static and Oscillating Electric Fields. II Theoretical Analysis Based on K-V Curve”, Ferroelectrics 470, 143-158 (2014.
  • Solid Oxide and Molten Carbonate Fuel Cells
    1. Michael Rottmayer, Raj Singh, and Hong Huang, “Morphological and Electrical Stability Studies of Pt/Yttria-Stabilized Zirconia Nanocomposite Thin Film Cathodes for Microfabricated Solid Oxide Fuel Cells. International Symposium on Microelectronics: Vol. 2017, No. 1, pp. 000360-000385 (2017).
    2. Michael Rottmayer, Raj Singh and Hong Huang, “The influence of microstructure and functional-grading on the electrochemical response of Pt/Yttria-stabilized zirconia nanocomposite thin films in micro-solid oxide fuel cells”, J. Power Sources, 332, 139-148 (2016).
    3. R.N. Singh, “Kinetics of Self-Repair in Inorganic Glasses: Modeling and Experimental Verification,” Journal of Materials Science49(15), 4869-4879 (2014).
    4. Thomas G.Howell, Cory P.Kuhnell, Thomas L. Reitz, Bryan C. Eigenbrodt, and Raj N. Singh, “Sr2 � XLaXMgMoO6 and Sr2 � XLaXMgNbO6 for Use as Sulfur-Tolerant Anodes Without a Buffer Layer,” J. Am. Ceram. Soc., 97 [11]3636�3642 (2014).
    5. T.G. Howell, C.P. Kuhnell, T.L. Reitz, A.M. Sukeshini, and R.N. Singh, “A2MgMoO6 (A=Sr, Ba) for use as Sulfur Tolerant Anodes,” Journal of Power Sources231, 279-284 (2013).
    6. R.N. Singh, “Self-Healing Seals for SOFCs,” American Ceramic Society Bulletin85[2], 13 (2006).
    7. R.N. Singh, “Sealing Technology for Solid Oxide Fuel Cells,” International Journal of Applied Ceramic Technology4[2], 134-144 (2007).
    8. R.N. Singh, “High Temperature Seals for Solid Oxide Fuel Cells (SOFC)”, Journal of Materials Engineering and Performance15(4), 422-426. (2006).
    9. R.N. Singh an S.S. Parihar, “Layered Composite Seals for Solid Oxide Fuel Cells (SOFC),” Ceramic Engineering Science Proceedings26(4), 247-255 (2005).
    10. N. Govindraju, W.N. Liu, X. Sun, P. Singh, and R.N. Singh, “ A Modeling Study on the Thermomechanical Behavior of Glass-Ceramic and Self-Healing Glass Seals at Elevated Temperatures,” Journal of Power Sources190, 476-484 (2008).
    11. R.N. Singh, “Molten Carbonate Fuel Cells,” Bulletin of the American Ceramic Society60(6), 629 (1981).
    12. R.N. Singh, “Fracture Strength of a Porous Lithium Aluminate Structure for Application in Molten Carbonate Fuel Cells,” Ceramic Engineering Science Proceedings1(7-8)B, 500 (1980).
    13. R.N. Singh and J.T. Dusek, “Effect of Powder Characteristics and Sintering Conditions on the Porosity of An Insulating Electrolyte Retainer,” Advances in CeramicsV 1 (1980).
    14. J.W. Sim, R.N. Singh, and K. Kinoshita, “Testing of Sintered Lithium Aluminate Structures in Molten Carbonate Fuel Cells” Journal of the Electrochemical Society127, 1766 (1980).
    15. R.N. Singh and J.T. Dusek, “Porous Electrolyte Retainer for Molten Carbonate Fuel Cell,” U.S. Patent # 4389467 (1983).

 

Back To Top
MENUCLOSE