Skip to main content
Apply

Engineering, Architecture and Technology

Open Main MenuClose Main Menu

CEAT building

Marimuthu Andiappan, Ph.D.

Dr, Marimuthu Andiappan


Education

Ph.D., Chemical Engineering
University of Michigan, 2013

M.S., Chemical Engineering
Indian Institute of Science, 2007

B.S., Chemical Engineering

Anna University, 2005


Awards

NSF CAREER Award, 2022


Industrial Research Experience

Research Scientist (June 2013 – Aug 2016), Eli Lilly & Company, Indianapolis, IN


Major Areas of Research

Plasmonic Photocatalysis
Heterogeneous Catalysis
Homogeneous Catalysis
Process Modeling and Simulation


Recent Publications

33. Khatri N, Tirumala, R.A., Tan S, Andiappan, M., Kalkan A.K. Resonance Energy Transfer and Purcell Effect in a Cu2O/Au Hybrid Optical Antenna, 2024. Submitted.

 

32. Tirumala, R.A., Ramakrishnan S, Andiappan, M. Distinguishing Dynamic Phase Catalysis in Cu based nanostructures under Reverse Water Gas Shift Reactions, 2024. Submitted.

 

31. Gyawali, S., Tirumala, R.A., Andiappan, M., Bristow, A.D. Carrier dynamics in cuprous oxide-based nanoparticles and heterojunctions, Proceedings of SPIE, 2024, 12884.  http://dx.doi.org/10.1117/12.3002963

 

30. Gyawali, S., Tirumala, R.A., Loh, H., Andiappan, M., Bristow, A.D. Photocarrier recombination dynamics in highly scattering Cu2O nanocatalysts clusters, Journal of Physical Chemistry C 2024, 128, 5, 2003–2011. https://pubs.acs.org/doi/10.1021/acs.jpcc.3c06941

 

29. Ravi Teja Addanki Tirumala, Nishan Khatri, Sundaram Bhardwaj Ramakrishnan, Farshid Mohammadparast, Mohd Tauhid Khan, Susheng Tan, Phadindra Wagle, Sharad Puri, David N. McIlroy, Ali Kaan Kalkan, and Marimuthu Andiappan "Tuning Catalytic Activity and Selectivity in Photocatalysis on Mie-Resonant Cuprous Oxide Particles: Distinguishing Electromagnetic Field Enhancement Effect from the Heating Effect" ACS Sustainable Chemistry & Engineering 2023 11 (44), 15931-15940 

https://pubs.acs.org/doi/10.1021/acssuschemeng.3c04328 

 

28. Ramakrishnan S.B., Khatri N.,Tirumala, R. A., Mohammadparast F, Karuppasamy K., Kalkan K., Andiappan M. “Cupric Oxide Mie Resonators”, J. Phys. Chem. C 2022, 126, 38, 16272–16279. 

https://pubs.acs.org/doi/10.1021/acs.jpcc.2c04646 

 

27. Tirumala, R.A., Gyawali S, Wheeler A, Ramakrishnan, S.B., Sooriyagoda R, Mohammadparast F, Tan S, Kalkan KA, Bristow AD, Andiappan M. "Structure-Property-Performance Relationships of Cuprous Oxide Nanostructures for Dielectric Mie Resonance-Enhanced Photocatalysis". ACS Catalysis. 2022, 12, 13, 7975–7985. 

https://pubs.acs.org/doi/10.1021/acscatal.2c00977 

 

26. Tirumala RA, Ramakrishnan S.B., Mohammadparast M, Khatri N, Arumugam MA, Tan S, Kalkan A.K, Andiappan M. "Structure-Property-Performance Relationships of Dielectric Cu2O Nanoparticles for Mie Resonance-Enhanced Dye Sensitization". ACS Appl. Nano Mater.  2022, 5, 5, 6699–6707. 

https://pubs.acs.org/doi/10.1021/acsanm.2c00730

 

25.  Ramakrishnan S.B., Mohammadparast F, Mou T, Le T, Prashant k. Jain, Wang B, Andiappan, M. "Photoinduced Electron and Energy Transfer Pathways and Photocatalytic Mechanisms in Hybrid Plasmonic Photocatalysis " (Invited Review Article), Advanced Optical Materials, 2021, 2101128. Featured in Hot Topics: Surfaces and Interfaces 

https://doi.org/10.1002/adom.202101128 

 

24.  Ramakrishnan S.B., Tirumala R, Mohammadparast F, Mou T, Le T, Wang B, Andiappan, M. "Plasmonic Photocatalysis" (Invited Book Chapter), RSC Catalysis, Editors: Spivey, J., Han, Y., Shekawat, D. 2021, June,33:38-86.

https://doi.org/10.1039/9781839163128-00038

 

23.  Pary, F. F., Tirumala, R. T., Andiappan, M., Nelson, T. L. “Copper (I) oxide nanoparticle-mediated synthesis of polyphenylenediethynylenes: Evidence for homogeneous catalytic pathway”, Catalysis Science and Technology, 2021, 11, 2414-2421.

https://doi.org/10.1039/D1CY00039J

 

22.  Mohammadparast, F.; Ramakrishnan S.B., Khatri, N.; Tirumala, R. A.; Tan, S.; Kalkan, K.; Andiappan, M. “Cuprous Oxide Cubic Particles with Strong and Tunable Mie Resonances for Use as Nanoantennas”, ACS Appl.Nano Mater, 2020, 3, 7, 6806–6815.

https://doi.org/10.1021/acsanm.0c01201

 

21.  Mohammadparast, F.; Tirumala, R. A.; Ramakrishnan S.B., Dadgar, A.; Andiappan, M. “Operando UV-Vis Spectroscopy as In-line Process Analytic Technology Tool for Size Determination of Functioning Metal Nanocatalysts”, Chemical Engineering Science, 2020, 255, 115821.

https://doi.org/10.1016/j.ces.2020.115821

 

20.  Al Mubarak, Z., Premaratne, G., Dharmaratne, A., Mohammadparast, F., Andiappan, M., Krishnan, S. “Plasmonic Nucleotide Hybridization Chip for Attomolar Detection: Localized Gold and Tagged Core/Shell”, Lab on a Chip, 2020, 20, 717-721. 

https://doi.org/10.1039/C9LC01150A

 

19.  Premaratne, G., Dharmaratne, A., Al Mubarak, Z., Mohammadparast, F., Andiappan, M., Krishnan, S. “Multiplexed Surface Plasmon Imaging of Serum Biomolecules: Fe3O4@Au Core/shell Nanoparticles with Plasmonic Simulation In-sights”, Sensors and Actuators B: Chemical, 2019, 299, 126956-126963.

https://doi.org/10.1016/j.snb.2019.126956

 

18.   Tirumala, R. A., Dadgar, A., Mohammadparast, F., Ramakrishnan S.B., Mou, T., Wang, B., Andiappan, M. “Homogeneous versus Heterogeneous Catalysis in Cu2O Nanoparticles Catalyzed C-C Coupling Reactions”, Green Chemistry, 2019, 21, 5284-5290.

https://doi.org/10.1039/C9GC01930H

 

17.  Mohammadparast, F.; Dadgar, A.; Tirumala, R. A.; Mohammad, S.; Cagri, O.; Kalkan, K.; Andiappan, M. “C-C Coupling Reactions Catalyzed by Gold Nanoparticles: Evidence for Substrate-mediated Leaching of Surface Atoms using Localized Surface Plasmon Resonance Spectroscopy”, Journal of Physical Chemistry C, 2019, 123, 11539-11545. (Featured on Journal Cover).

https://doi.org/10.1021/acs.jpcc.8b12453

 

16.  Merritt, J., Andiappan, M., Pietz, M., Richey, R., Sullivan, K., Kjell, D. “Mitigating the risk of co-precipitation of pinacol from telescoped Miyaura borylation and Suzuki couplings utilizing boron pinacol esters: Use of modeling for process design”, Organic Process Research & Development, 2016, 20, 178-188. 

https://doi.org/10.1021/acs.oprd.5b00324

 

15.  Linic, S., Christopher, P., Xin, H., Andiappan, M. “Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties”, Accounts of Chemical Research, 2013, 46, 1890-1899. 

https://doi.org/10.1021/ar3002393

 

14.  Andiappan, M., Zhang, J., Linic, S. “Tuning selectivity in propylene epoxidation by plasmon mediated photo-switching of Cu oxidation state”, Science, 2013, 339, 1590-1593. 

https://science.sciencemag.org/content/339/6127/1590

 

13.  Christopher, P., Xin, H., Andiappan, M., Linic, S. “Singular characteristics and unique chemical bond activation mechanisms of photocatalytic reactions on plasmonic nanostructures”, Nature Materials, 2012, 11, 1044-1050.  

https://doi.org/10.1038/nmat3454

 

12.  Andiappan, M., Christopher, P., Linic, S. “Design of plasmonic platforms for selective molecular sensing based on surface enhanced Raman spectroscopy”, Journal of Physical Chemistry C, 2012, 116, 9824-9829. 

https://doi.org/10.1021/jp301443y

 

11.  Vinu, R., Andiappan, M., Madras, G. “Enzymatic degradation of poly(soybean oil-g-methyl methacrylate)”, Journal of Polymer Engineering, 2010, 30, 57-76. 

https://doi.org/10.1515/POLYENG.2010.30.1.57

 

10.  Andiappan, M., Madras, G. “Continuous distribution kinetics for microwave assisted oxidative degradation of poly(alkyl methacrylates)”, AIChE Journal, 2008, 54, 2164-2173. 

https://doi.org/10.1002/aic.11548

 

9.  Andiappan, M., Madras, G. “Photocatalytic oxidative degradation of poly (alkyl acrylates) with Nano TiO2”, Industrial & Engineering Chemistry Research, 2008, 47, 2182-2190.  

https://doi.org/10.1021/ie0712939

 

8.  Andiappan, M., Madras, G. “Effect of oxidizers on microwave-assisted oxidative degradation of poly(alkyl acrylates)”, Industrial & Engineering Chemistry Research, 2008, 47, 7538-7544. 

https://doi.org/10.1021/ie7017349

 

7. Roy, S., Andiappan, M., Deshpande, P.A., Hegde, M.S., Madras, G. “Selective catalytic reduction of NOx: Mechanistic perspectives on the role of base metal and noble metal ion substitution”, Industrial & Engineering Chemistry Research, 2008, 47, 9240-9247.

https://doi.org/10.1021/ie8010879 

 

6.  Roy, S., Hegde, M.S., Sharma, S., Lalla, N.P., Andiappan, M., Madras, G. “Low temperature NOx and N2O reduction by H2: Mechanism and development of new nano-catalysts”, Applied Catalysis B: Environmental, 2008, 84, 341-350.

https://doi.org/10.1016/j.apcatb.2008.04.008

 

5.  Roy, S., Andiappan, M., Hegde, M.S., Madras, G. “NO reduction by H2 over nano-Ce0.98Pd0.02O2-δ”, Catalysis Communications, 2008, 9, 101-105. 

https://doi.org/10.1016/j.catcom.2007.05.031

 

4.  Roy, S., Andiappan, M., Hegde, M.S., Madras, G. “High rates of NO and N2O reduction by CO, CO and hydrocarbon oxidation by O2 over nano crystalline Ce0.98Pd0.02O2-δ: Catalytic and kinetic studies”, Applied Catalysis B: Environmental, 2007, 71, 23-31. 

https://doi.org/10.1016/j.apcatb.2006.08.005

 

3.  Andiappan, M., Madras, G. “Effect of alkyl-group substituents on the degradation of poly (alkyl methacrylates) in supercritical fluids”, Industrial & Engineering Chemistry Research, 2007, 46, 15-21. 

https://doi.org/10.1021/ie061068b

 

2.  Roy, S., Andiappan, M., Hegde, M.S., Madras, G. “High rates of CO and hydrocarbon oxidation and NO reduction by CO over Ti0.99Pd0.01O1.99”, Applied Catalysis B: Environmental, 2007, 73, 300-310. 

https://doi.org/10.1016/j.apcatb.2007.01.003

 

1.   Baidya, T., Andiappan, M., Hegde, M.S., Ravishankar, N., Madras, G. “Higher catalytic activity of nano-Ce1-x-yTixPdyO2-δ compared to nano-Ce1-xPdxO2-δ for CO oxidation and N2O and NO reduction by CO: Role of oxide ion vacancy”, Journal of Physical Chemistry C, 2007, 111, 830-839.   

https://doi.org/10.1021/jp064565e


Invited Guest Webinar

Marimuthu, A. “Use of DynoChem Modeling for Process Design: Mitigating the Risk of Co-precipitation” DynoChem Guest Webinar, June 8th 2016.


Conference Presentations

  1. Marimuthu, A., McFarland, A., Fennell, J. “Model based approach to develop a ring-closure reaction with high product selectivity”, AIChE Annual Meeting, Salt Lake City, UT, November 2015. 
  2. Marimuthu, A., Merritt, J., Vaidyaraman, S. “Model based approach to control pinacol precipitation risk in telescoped Miyaura borylation/Suzuki cross-coupling process”, AIChE Annual Meeting, Salt Lake City, UT, November 2015.
  3. Marimuthu, A., Merritt, J., Brown, G., Kuehne-Willmore, J. “Strategy to avoid catalyst deactivation in telescoped Miyaura borylation/Suzuki cross-coupling reaction”, AIChE Annual Meeting, Atlanta, GA, November 2014.
  4. Marimuthu, A., Christopher, P., Xin, H., Linic, S. “Conversion of solar into chemical energy on plasmonic metal nanostructures”, AIChE Annual Meeting, San Francisco, CA, November 2013. 
  5. Marimuthu, A., Linic, S. “Design of selective propylene epoxidation catalysts: Heterogeneous catalysis on optically excited plasmonic metal nanostructures”, AIChE Annual Meeting, San Francisco, CA, November 2013.
  6. Marimuthu, A., Xin, H., Christopher, P., Linic, S. “Optically excited plasmonic metal nanostructures as selective direct propylene and ethylene epoxidation catalysts”, AIChE Annual Meeting, San Francisco, CA, November 2013.
  7. Linic, S., Marimuthu, A. Design of selective propylene epoxidation catalysts: Heterogeneous catalysis on optically excited plasmonic metal nanostructures”, 246th ACS National Meeting & Exposition, Indianapolis, IN, September 2013.
  8. Marimuthu, A., Zhang, J., Linic, S. “Exploiting the optical properties of copper nanoparticles for selective epoxidation of propene”, 23rd North American Catalysis Society Meeting, Louisville, KY, June 2013.
  9. Marimuthu, A., Christopher, P., Xin, H., Linic, S. “Plasmonic metal nanostructures for solar water splitting and light-driven selective partial oxidation of olefins”, 23rd North American Catalysis Society Meeting, Louisville, KY, June 2013.
  10. Marimuthu, A., Xin, H., Christopher, P., Linic, S. “Direct photo-catalysis on optically excited plasmonic metal nanostructures”, 245th ACS National Meeting & Exposition, New Orleans, LA, April 2013.
  11. Marimuthu, A., Linic, S. “Surface plasmon mediated selective epoxidation of propene over Cu catalyst”, AIChE Annual Meeting, Pittsburgh, PA, October-November 2012. 
  12. Marimuthu, A., Xin, H., Christopher, P., Linic, S. “Optically excited plasmonic metal nanostructures as selective direct propylene and ethylene epoxidation catalysts”, AIChE Annual Meeting, Pittsburgh, PA, October-November 2012.
  13. Xin, H., Marimuthu, A., Christopher, P., Linic, S. “Ab initio studies of electron-driven photo-reactions on surfaces of plasmonic metal nanoparticles”, AIChE Annual Meeting, Pittsburgh, PA, October-November 2012.
  14. Marimuthu, A., Linic, S. “Direct propylene epoxidation with molecular oxygen on optically active copper catalyst”, AIChE Annual Meeting, Pittsburgh, PA, October-November 2012 (poster).
  15. Marimuthu, A., Xin, H., Christopher, P., Linic, S. “Direct photocatalysis on optically excited plasmonic metal nanostructures of coinage metals”, 244th ACS National Meeting & Exposition, Philadelphia, PA, August 2012.
  16. Marimuthu, A., Linic, S. “Design of selective propylene epoxidation catalysts: Heterogeneous catalysis on optically excited plasmonic metal nanostructures”, 243rd ACS National Meeting & Exposition, San Diego, CA, March 2012.
  17. Marimuthu, A., Zhang, J., Linic, S. “Visible light enhanced selective propylene epoxidation over copper based catalyst”, AIChE Annual Meeting, Minneapolis, MN, October 2011.
  18. Marimuthu, A., Christopher, P., Linic, S. “Surface plasmon-enhanced selective molecular sensing using unique silver nanoaggregates”, AIChE Annual Meeting, Minneapolis, MN, October 2011. 
  19. Marimuthu, A., Zhang, J., Linic, S. “Copper based plasmonic catalyst for efficient and selective epoxidation of propene”, AIChE Annual Meeting, Minneapolis, MN, October 2011 (poster).

List of News and Highlights

  1. chemistryworld, Royal Society of Chemistry, Title: Copper catalysis sees the light
  2. Chemical & Engineering News, American Chemical Society, Title: Illuminating Copper Promotes Propylene Oxide Production.
  3. Materials Research Society news, Title: Light Induces Reduction of Copper Catalyst under Steady-State Conditions.
  4. physicstoday, American Institute of Physics, Title: Rust on nanoparticle catalyst reversed by high-intensity light.
  5. Link to the University of Michigan press release on NSF news, Title: Light May Recast Copper As Chemical Industry "Holy Grail" https://www.nsf.gov/news/news_summ.jsp?cntn_id=127483
MENUCLOSE